

Neutralization of multidrop MDI capacitance impact

Wojciech Koczwara, David Brandt, Scott Griffiths •

Neutralization of multidrop MDI capacitance impact | 20th Oct 21

Standard 802.3cg MDI equivalent circuit (simplified)

• With multiple standard connectors in proximity, node capacitance adds to the transmission line capacitance

• Link segment
$$Z_0 = \sqrt{\frac{L}{c}}$$
 decreases to $Z_0 = \sqrt{\frac{L}{c + CMDI}} < 100 \Omega$

• For MDIs electrically close to each other, connectors' capacitance adds to link capacitance which lowers transmission line characteristic impedance locally

Connector with inline inductors

• Link segment
$$Z_0$$
 is restored to $Z_0 = \sqrt{\frac{L+Linl_{ine}}{C+CMDI}} = 100 \,\Omega$

- L_{inline} is chosen to be 10k * C_{MDI} i.e. we need 10nH to offset each 1pF
- Inductors work with the MDI capacitance and make the MDI look like a natural piece of link segment

S11 of MDI, with and without 4*39nH inline inductors

Rphy=10k, Cphy = 13/14/15.6/17/18/19pF. No PoDL.

Eye diagrams, clumped distribution R=10kΩ, C=15pF, L=80µH (with PoDL)

16 nodes, 50m cable, 45mm clumped section spacing, 10cm stubs

no inline inductors

with inline inductors

Eye diagrams, clumped distribution R=10kΩ, C=15pF, L=N/A (without PoDL)

16 nodes, 50m cable, 45mm clumped section spacing, 10cm stubs

no inline inductors

Eye diagrams, clumped distribution R=10kΩ, C=25pF (Lind=4*65nH), L=N/A (without PoDL)

16 nodes, 50m cable, 45mm clumped section spacing, 10cm stubs

no inline inductors

with inline inductors

Thank you

