IEEE P802.3da 10 Mb/s Single Pair Multidrop Segments Enhancement Task Force

MIXING SEGMENT RECOVERY/REDUNDANCY **TERMINATION**

14 JULY 2020 IEEE 802.3 JULY 2020 PLENARY v5

Presenter

Gergely Huszak (Kone)

Contributors

- George Zimmerman (CME Consulting)
- Peter Jones (Cisco)

The problem: consequences of a **single** failure of the link

Peter Jones (Cisco) presented earlier* on the powering and switching aspects of this (latter) problem and pointed out that by applying appropriate techniques, a single failure can be recovered from fully with respect to both powering and frame switching

Presentation of Peter Jones (Cisco), January 15, 2020 Teleconference Meeting, http://www.ieee802.org/3/SPMD/public/jan1520/spmd_01_011520.pdf

 In case of a single cabling issue, to maintain connectivity between the 2 neighboring partitions of devices that remain galvanically connected via both conductors, termination shall be present at both ends of the newly formed 2 mixing segments → this is not a given

^{*} See also backup slide #1

2 scenarios

Is our current PHY specified to work in this case?

- Pro:
 - As simple as it gets
- Con:
 - Outcome (extent of the effect) may greatly depend on details of receiver implementations (interoperability problem)
 - The change in the channel characteristics may be drastical, eliminating all margins or unknown amount of frame loss right off the bat
- Answer to the rhetoric question above is "no"
 - The clause 147 PHY is only specified to work on a compliant mixing segment
- Action required:
 - Simulate and/or measure mixing segment's IL, RL and MC to understand the effect

Possible solutions

#1: change channel specs

- Details: write standard text so that losing one of the two terminations would be a normal condition
- Pro:
 - With respect to system and network design, possibly optimal solution
 - No interoperability concerns
- Con:
 - Possible increase in PHY complexity
- Additional consideration:
 - If it is implementable also for the case when no termination is present (whatsoever), would it not be an optimal solution (with respect to 10SPE in general) not to require terminations at all?

Possible solutions: change the PHY specs to run on the impaired segment #2a: reduced "emergency" speed and/or modulation/line code

- Details: upon failure, the whole segment switches to a lower speed and/or more resilient channel code
- Pro:
 - Operation can be maintained without need for additional external components
- Con:
 - Normal system service is not be maintainable at lower speeds (added system design difficulty)
 - New MAC speed (or MAC pause/buffer mechanisms) required
 - Recovery may be difficult (oscillation problems)
 - Possible increase in PHY complexity
 - Not available to clause 147 PHYs

Possible solutions: change the PHY specs to run on the impaired segment #2b: FEC?

- Details: design and implement a FEC that can compensate for worsened conditions
- Pro:
 - Normal operation can be maintained without need for additional external components
- Con:
 - May not be implementable: FEC is not the right solution for Inter-Symbol Interference (ISI), as increased distortion is likely to be pattern-dependent
 - Possibly large increase in PHY complexity
 - Backward compatibility is a question

Possible solutions: self-healing channel #3: apply 2 new terminations "on-the-fly" at the right places

- Details: upon failure, make the 2 nodes neighboring the conductor discontinuity apply local termination
 - Determining location of failure may require knowledge of the adjacent nodes
- Pro:
 - Channel characteristics can be maintained
 - Problem is analogous to adding a new node (or string of nodes) onto the end of a mixing segment
 - Installation practices are now immune to missing terminations (no need for explicit termination plugs)
- Con:
 - Switch-over takes time
 - Implementation of on-demand termination may add relative cost/complexity to each node

Thank you for your kind attention Any questions?

Backup slides

- This topology is a single mixing segment, with two Switch/PSEs
- This provides resilience against a single failure causing loss of network access or power.
 - Many protocols (e.g. VRRP, REP) make use of two uplink devices
 - PSEs are expected to run "active/standby", using software for role arbitration
 - If the active ceases to power the line, standby takes over ASAP.