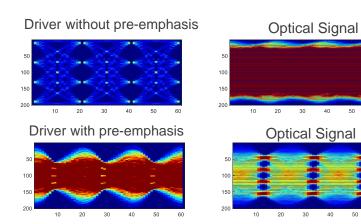


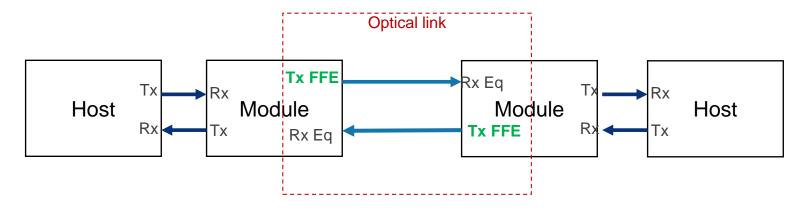
Evaluation of fixed vs adaptive pre-emphasis for 100G per lambda optical link

Jose Castro jmca@panduit.com

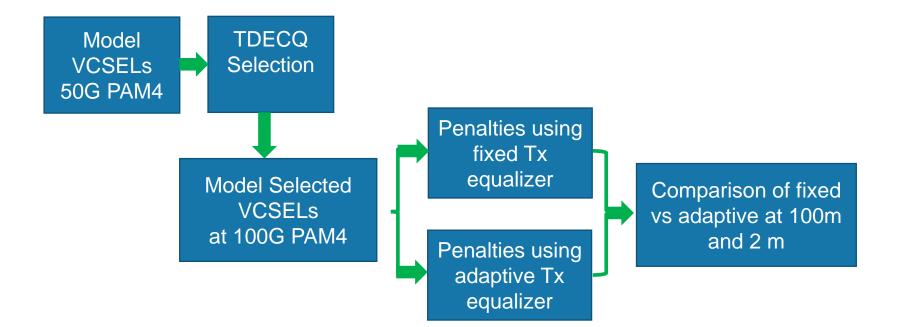
IEEE P802.3db 100 Gb/s, 200 Gb/s, and 400 Gb/s Short Reach Fiber Task Force Ad Hoc Teleconference, 6 August 2020


Background

- The reaches of MMF channels have been reducing as data rate increases.
 - New methods are needed to serve markets required higher speed over 100m MMF channels.
 - Better equalization, more powerful low-latency FECs,...
- Recent presentations [1-3] evaluated options to achieve reaches ≥75 based on link model simulations and experiments.
 - Link parameters such as transmitter equalization with at least 3 taps, receiver equalization using at least 9 taps, RIN<-133 dB/Hz, Spectral Width < 0.6 nm, among others are needed.
- Models indicate that optimization of the transmitter equalizer could be impactful
 - Optimization requires to adapt to channel variations and implies some degree of training which is not supported in current MMF PMDs.
 - Options for transmitter trainer being considered in T11.2 Fibre Channel PI-8 [4].
 - However, potential advantages not quantified yet.
- This contribution evaluates potential advantages of using adaptive Tx equalization relative to fixed Tx equalization schemes


Pre-emphasis in MMF channels

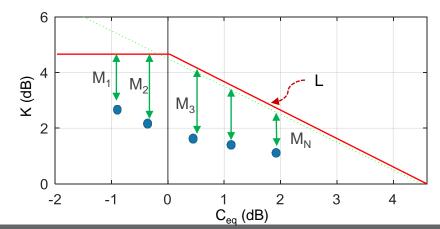
- This presentation focuses in the Tx equalization of the optical link.
 - A Tx equalizer of 3 taps is used here
 - (C₋₁, 1, C₁)



100G experiments from [5]

infrastructure for a connected

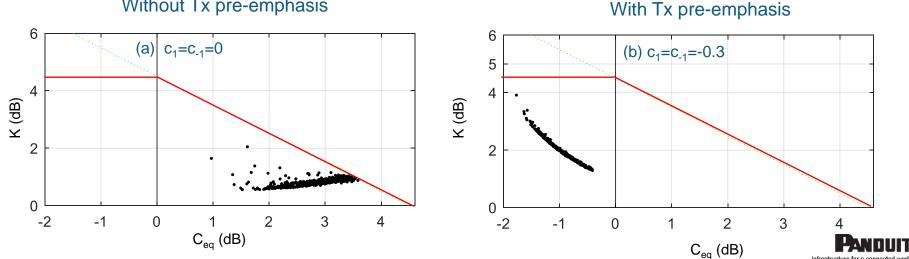
Evaluation Methodology


Methodology to Select VCSEL Population

- A set of VCSELs were simulated using laser rate equations at two symbol rates
 - Initially, 1200 VCSELs of 26.5625 GBaud (50Gbps PAM-4 802.3 cm)
 - Random variation in VCSEL parameters such as bias, carrier and photon lifetime, cavity reflectance, among others (see backup slide for more information)
 - RIN not included in initial estimation
 - Selected subset 440 VCSELs that "passed" TDECQ
- The selected subset was modeled at 53.125 GBaud (for 100G PAM4 802.3 db).
 - Different transmitter equalization scheme applied
 - Additional 10 VCSELs outliers (non passing and non-equalizable) eliminated. Population =425 VCSEL
 - Fixed: { (-0.1 1 -0.1) , (-0.3 1 -0.3) , (-0.4 1 -0.4) }
 - Adaptive $(c_1 + c_1)$, adaptive, where the absolute values of c_1 are capped at values ranged from 0.3 to 0.4. Results shown in this presentation, are capped at 0.4.
- The difference in dispersion penalties between fixed and adaptive approach were compared

Methodology to Quantify Differences

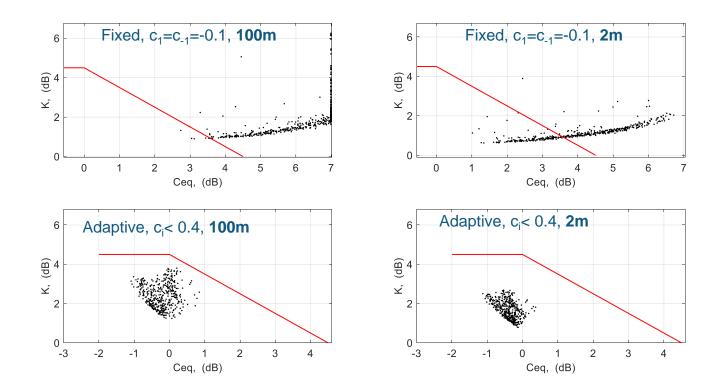
- A modified TDECQ metric used
 - TDECQ is defined for 5 Taps and bandwidth based on 100m channel bandwidth,
 - Here relaxed requirements to allow for 9 taps and channel bandwidths or arbitrary length (e.g., 2m and 100m OM4)
- TDECQ is separated in main components to facilitate comparison
 - TDECQ (dB) = K (dB) + C_{eq} (dB) as used in [6].
 - where K represents non-equalizable impairments (noise, distortion, eye tilt,...) and C_{eq} the noise enhancement.
- Margins of K relative to a penalty limit, L, were computed as follows
 - The limit, L is equal to min(4.5 dB C_{eq} (dB) ,4.5dB)
 - The margin, M, is equal to L-K



Each dot represents a VCSEL

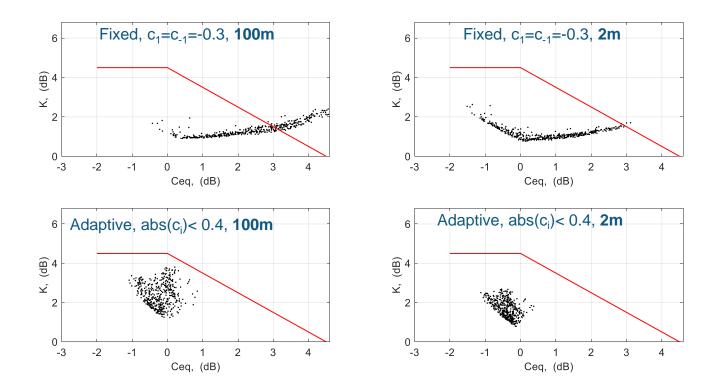
VCSEL Population

- Selected VCSEL's in TDECQ plane
 - Symbol Rate 26.5625 Gbaud
 - Receiver BW=13.2813 GHz
 - Channel BW =11.2 GHz
 - **RIN** not included

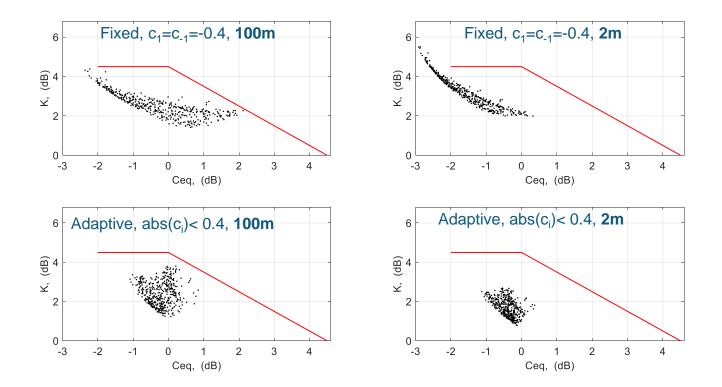


Without Tx pre-emphasis

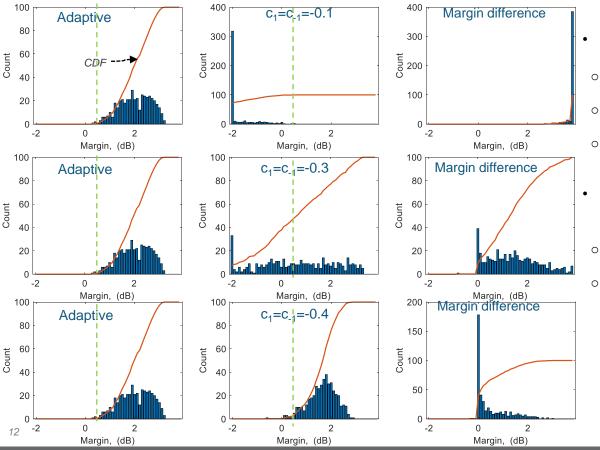
Results



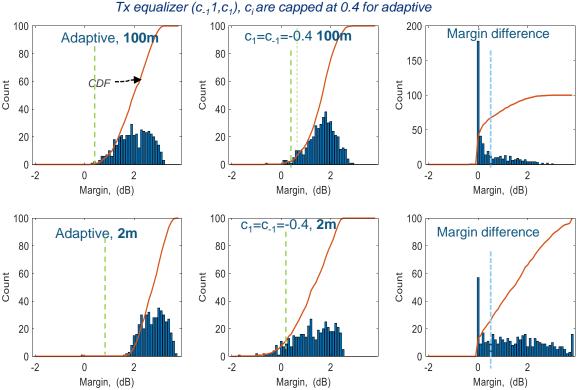
Fixed vs Adaptive at 100G: Results for low Tx Eq.



Fixed vs Adaptive at 100G: Results

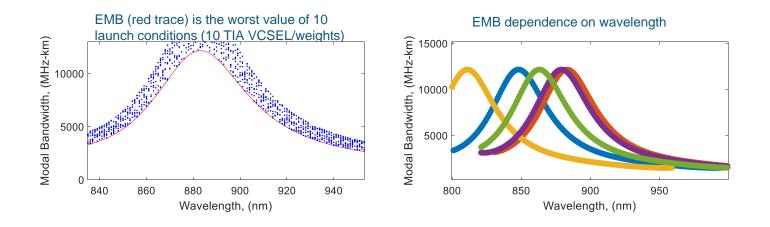

Fixed vs Adaptive at 100G: Results for high Tx Eq.

Margin Comparison 100G at 100 m, adaptive vs fixed


Tx equalizer $(c_{-1}1,c_{1})$, c_{i} are capped at 0.4 for adaptive

- Results for 100m show the advantages of adaptive over fixed equalization schemes.
 - For $c_1=c_{-1}=-0.1$, the advantage is near 4 dB for almost 100% of the VCSELs
 - For $c_1=c_{-1}=-0.3$, the advantage is near >1 dB for $\approx 65\%$ or the VCSELs
 - For $c_1=c_{-1}=-0.4$, which correspond the adaptive equalizer cap, the advantages > 1 dB for 28% of the VCSELs and 0.5 dB for 33%
 - As expected, the advantages reduce when the tap cap is equal to the fixed value but still important
 - >0.5 dB can help to allocate for RIN or other penalties.
 - The advantages are higher when considering channel length variation as shown in the next slide

Margin Comparison 100G 100m and 2 m



- When the channel length variation is included, a fixed pre-emphasis shows more disadvantages.
 - $\circ~$ For example, the fixed equalizer using c_1=c_1=0.4 over equalizes the channel for 2 m, producing failures for 10% of the VCSELs
 - This degradation is caused by overshoot and peaking of the driver which reduces the OMA signal.
- Taking into consideration the length variation, our overall evaluation using passing VCSELs, indicates that at least 40% of the cases see and improvement > 0.5dB,
 - o This improvement can impact on yields
 - From [2] that 0.5 dB can increase reaches in ~15 m, which can be significant for the switch-switch links

Why adaptive equalization?

- A lot of variability in MMF channels:
 - o VCSELs properties and channel length as shown in previous slides
 - Impact of EMB on launch and wavelength of the VCSEL.
 - VCSELs most likely to see higher bandwidth that reported EMB which can exacerbate TX pre-emphasis
 - o DMD tilt, left of right might need different weight is the Tx equalizer
- Modeling result shows adaptive equalization can produce higher margins ≥0.5 dB for ~40% of the VCSEL modeled.

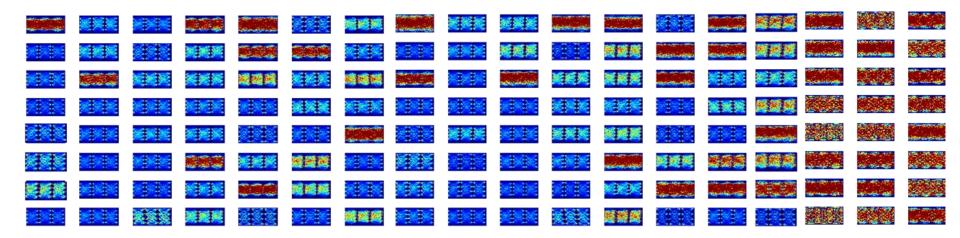
Summary & Conclusions

- Compared adaptive vs. fixed Tx equalization for MMF optical link using VCSEL modeling and TDECQ based metric
- Results show margin and yield advantages
 - Adaptive Tx equalization can support more pre-emphasis without over equalizing shorter links and also more resilient to bandwidth variations due to launch condition & wavelength
 - Advantages of >0.5dB shown in results can increase reaches in >15 m for slower lasers,
- Proposed further investigation on performance advantages (reach and margins), yield and implementation cost
 - Additional margins can help in serving the switch-switch market better.
 - The estimation of yield improvement, if validated, can offset implementation cost
 - As proposed in a previous meeting, a collaboration with Fibre Channel T11.2 FC-PI8 could benefit both standards to achieve longer reaches or higher data rates.

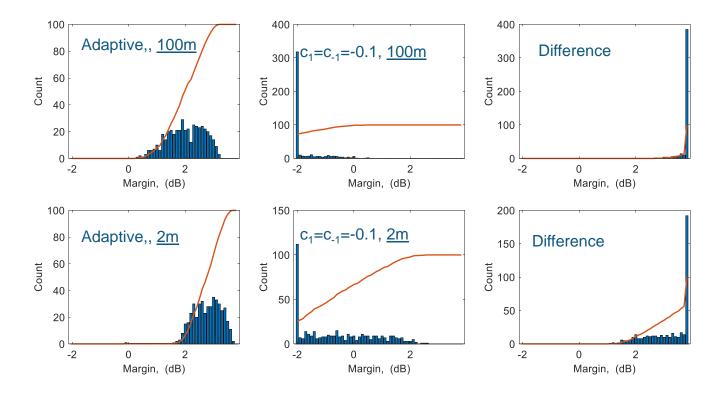
Questions

References

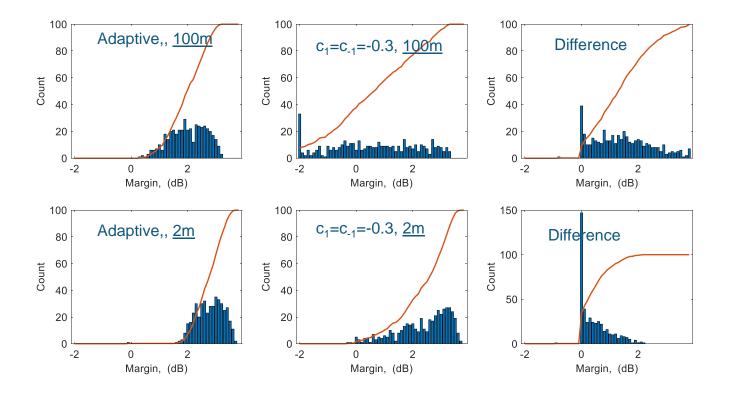
- [1] <u>bhatt_100GSR_adhoc_01_050720</u>
- [2] <u>castro_100GSR_adhoc_01a_050720</u>,
- [3] ingham_3db_adhoc_01a_062520
- [4] T11-2019-00225-v003 (Anil Mehta)
- [5] <u>castro_100GSR_01a_0120</u>
- [6] dawe_3cd_01b_0718



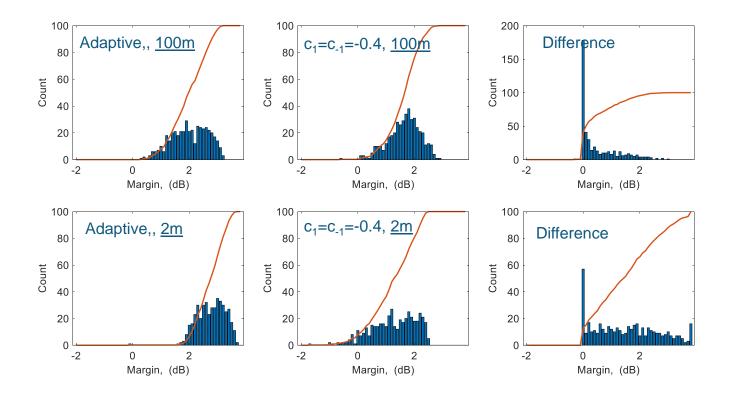
Backup


VCSEL simulation

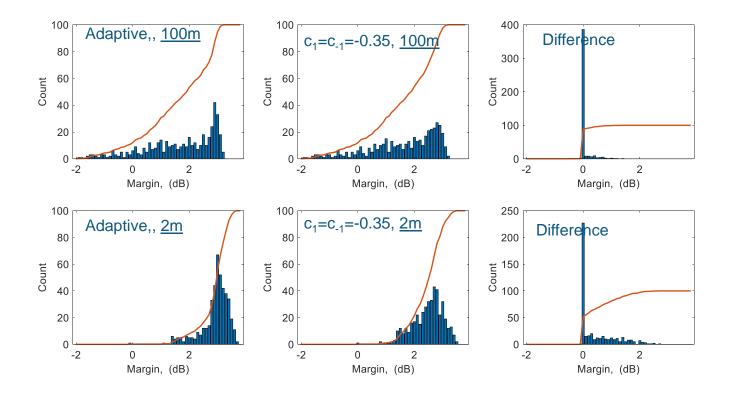
- Initial population of 1200 VCSEL modeled using laser rate equations
 - · Modeled VCSELs with up to 4 modes
 - Changed randomly parameters such as: bias Current, modulation current, cavity aperture, recombination factor, carrier lifetime, photon lifetime, saturation coefficient
- Selected subset that pass TDECQ (26.56GBaud PAM4).
- Modeled Penalties the selected subset at 100G (53.125GBaud PAM4)



Fixed, c₁=c₋₁=-0.1, <u>vs Adaptive capped 0.4</u>



Fixed, c₁=c₋₁=-0.3, <u>vs Adaptive capped 0.4</u>


Fixed, c₁=c₋₁=-0.4, <u>vs Adaptive capped 0.4</u>

22

Fixed, c₁=c₋₁=-0.35, <u>vs Adaptive capped 0.35</u>

Training time

Link Bring Up Times – 1

- 32GFC
 - LSN 0.5 seconds
 - Optical Module Bring Up 0 seconds
 - Link Training 1.5 seconds
 - Total 2 seconds
- 64GFC
 - LSN 0.5 second
 - Optical Module Bring Up ? (2 Seconds Estimate)
 - · Link Training 3 seconds
 - Total = 5.5 seconds

T11-2019-00343-v001

