

In Support of Linear Interface: Updated Measurements / Simulations

MACOM Ryan Latchman

> IEEE P802.3db Ad Hoc Teleconference 1 Oct 2020

Agenda

- > Introduction
- > Rx Path Measured Results
 - Leveraging Electrical TDECQ with Trace Loss
 - Sensitivity results with 10dB Channel
- > Tx Path simulations
- > Conclusion

LINEAR PHYSICAL INTERFACE (LPI)

Figure TBD shows the relationship of the LPI interface with other sublayers to the ISO/IEC Open System Interconnection (OSI) reference model ...

MDI = MEDIUM DEPENDENT INTERFACE

PMD = PHYSICAL MEDIUM DEPENDENT

PCS = PHYSICAL CODING SUBLAYER PMA = PHYSICAL MEDIUM ATTACHMENT

400GAUI-4 = 400 Gb/s FOUR-LANE ATTACHMENT UNIT

400GMII = 400 Gb/s MEDIA INDEPENDENT INTERFACE

CGMII = 100 Gb/s MEDIA INDEPENDENT INTERFACE

MAC = MEDIA ACCESS CONTROL

INTERFACE

MACOM

Channel Insertion Loss Budget & Host LPI

- > TBD target= 6.875dB including allowance for BGA and connector footprint vias= 100GBASE-CR
- > Host LPI Component much more capable than equalizers used for Optical evaluation

100G Linear Interface Rx Demonstration

- > Optical input: SMF input
- > Rx Setup:
 - MACOM PD (BSP56B) and MACOM TIA (MATA-05817B)
 - Trace (emulate host loss)
 - Keysight Scope

Optical Input

Linear Rx & Trace Board

TDECQ FFE Taps=5 Electrical TDECQ after trace =4.18dB

TDECQ FFE Taps=9 Electrical TDECQ after trace = 1.86dB

100G Optical Source -->MACOM PD/TIA --> Trace Loss Channel--> BER Curve

> BER curve measured with 15tap FFE in Rx

VCSEL Simulations in the Tx

Tx Path Simulation Model

Simulation Results

Eye diagram after 100 m OM4

TDECQ: 3.5 dB

PAM4
53.125 GBd
PRBS15Q
3-tap T-spaced
4.8 × 10-4
34 GHz
38.3 GHz
26.6 GHz
9-tap T-spaced
75 °C
863 nm
0.42 nm
3 dB

• 100 m OM4 link: TDECQ within 4.5 dB with a 9-tap Rx FFE

Reference: ingham_3db_adhoc_01a_062520

Conclusion

Linear interface is demonstrated to be feasible via measurements and simulations

- > Volume adoption at 100G per λ requires improved economics (relative cost and power)
 - Linear architecture as potential to enable volume ramp and save 10s of MILLIONS watts / year

