# Baseline Proposal for $100 \mathrm{~Gb} / \mathrm{s}$ per Lane Optical PMDs Supporting 50 and 100m OM4 MMF 

Ramana Murty and David Dolfi<br>Broadcom Inc.

December 17, 2020

IEEE P802.3db $100 \mathrm{~Gb} / \mathrm{s}, 200 \mathrm{~Gb} / \mathrm{s}$, and $400 \mathrm{~Gb} / \mathrm{s}$ Short Reach Fiber Task Force
Ad Hoc Teleconference

## Supporters

| John Abbott | Corning |
| :--- | :--- |
| Jose Castro | Panduit |
| Mabud Choudhury | OFS |
| Ali Ghiasi | Ghiasi Quantum |
| Nikolay Ledentsov | VI Systems |
| Earl Parsons | Commscope |
| David Piehler | Dell |
| Lance Thompson | II-VI |
| Jim Young | Commscope |

## Adopted Objectives

## Reach Objective A

Define a physical layer specification that supports $100 \mathrm{~Gb} / \mathrm{s}$ operation over 1 pair of MMF with lengths up to at least 50 m . Define a physical layer specification that supports $200 \mathrm{~Gb} / \mathrm{s}$ operation over 2 pairs of MMF with lengths up to at least 50m. Define a physical layer specification that supports $400 \mathrm{~Gb} / \mathrm{s}$ operation over 4 pairs of MMF with lengths up to at least 50 m .

Reach Objective B

Define a physical layer specification that supports $100 \mathrm{~Gb} / \mathrm{s}$ operation over 1 pair of MMF with lengths up to at least 100 m . Define a physical layer specification that supports $200 \mathrm{~Gb} / \mathrm{s}$ operation over 2 pairs of MMF with lengths up to at least 100m. Define a physical layer specification that supports $400 \mathrm{~Gb} / \mathrm{s}$ operation over 4 pairs of MMF with lengths up to at least 100m.

## Position in the 802.3 Ethernet Architecture


$400 \mathrm{GMII}=400 \mathrm{~Gb} / \mathrm{s}$ MEDIA INDEPENDENT INTERFACE $200 \mathrm{GMII}=200 \mathrm{~Gb} / \mathrm{s}$ MEDIA INDEPENDENT INTERFACE CGMII $=100 \mathrm{~Gb} / \mathrm{s}$ MEDIA INDEPENDENT INTERFACE LLC = LOGICAL LINK CONTROL MAC $=$ MEDIA ACCESS CONTROL MDI = MEDIUM DEPENDENT INTERFACE PCS $=$ PHYSICAL CODING SUBLAYER

PHY $=$ PHYSICAL LAYER DEVICE
PMA $=$ PHYSICAL MEDIUM ATTACHMENT PMD $=$ PHYSICAL MEDIUM DEPENDENT RS-FEC = REED-SOLOMON FORWARD ERROR CORRECTION
xR represents two PMDs (naming TBD)
PMD FOR MULTIMODE FIBER 50 m PMD FOR MULTIMODE FIBER 100 m

## Links

- PMD reach chosen so that the OM4 fiber determines the test methodology.

| PMD type | Fiber type | Operating range $(\mathrm{m})$ |
| :--- | :--- | :--- |
| Reach Objective A | OM3 | $0.5-30$ |
|  | OM4 | $0.5-50$ |
|  | OM5 | $0.5-50$ |
|  | OM3 | $0.5-60$ |
|  | OM4 | $0.5-100$ |
|  | OM5 | $0.5-100$ |

- The BER when processed by the PMA shall be less than $2.4 \times 10^{-4}$ provided the error statistics are sufficiently random.


## Assumptions

- Link budget is drawn with a TDECQ budget of 4.5 dB for the OM4 100 m reach, same as in 50GBASE-SR and 400GBASESR4.2.
- Interoperability: When the OM4 cable is shorter than 50 m , Tx for 100 m reach must operate with a Rx for 50 m reach and vice versa.
- Allocation of 1.5 dB for connector loss.
- Fiber chromatic dispersion parameters $\mathrm{UO}=1328 \mathrm{~nm}$ and $\mathrm{SO}=0.093477 \mathrm{ps} /\left(\mathrm{nm}^{2} \cdot \mathrm{~km}\right)$. [Ref. 4]


## Pre-emphasis

## 100G MMF links will use pre-emphasis.


$\mathrm{C}_{\text {eq }}$ noise enhancement at the Rx equalizer.
$K$ non-equalizable component of signal before Rx equalizer.

## Specifications that impact and limit the use of pre-emphasis.

Measurements and simulation/modeling are needed to set reasonable values.

1. TDECQ - $10 \log _{10}\left(C_{e q}\right)$, each lane (max) [blue line]

Tx indicated by dot ( $\mathbf{O}$ ) can pass ( $\mathbf{O}$ ) TDECQ by applying pre-emphasis.
(a) Should the Tx be rejected for K $>$ TDECQ $_{\text {max }}$ ?
(b) Will the Tx be rejected by another criterion?

Propose not including in link specification (following 802.3cu).
2. Minimum value for the cursor on the reference equalizer [red line] Tx must work over $0.5-100 \mathrm{~m}$ resulting in a wide range of $\mathrm{C}_{\mathrm{eq}}$. Minimum value for the Rx FFE cursor must be set sufficiently small to allow devices with high K (but less than $\mathrm{TDECQ}_{\max }$ ) to operate. Propose a min value of 0.7 for the cursor in the reference equalizer.

TIA-related specifications introduced in 802.3cu
3. Tx optical power excursion (max) $=\max ($ Pmax $-\operatorname{Pav}, \operatorname{Pav}-\operatorname{Pmin})$ Accounts for TIA linearity.
4. Tx optical power over/under-shoot (max) as a fraction of outer OMA. Accounts for TIA linearity.
Balance the need for sufficient pre-emphasis and TIA linearity.

## Transmit Characteristics

| Description | Value |  | Unit |
| :---: | :---: | :---: | :---: |
|  | OM4 50m | OM4 100m |  |
| Signaling rate, each lane (range) | $53.125 \pm 100 \mathrm{ppm}$ |  | GBd |
| Modulation format | PAM4 |  |  |
| Center wavelength (range) | 842 to 868 | 844 to 863 | nm |
| RMS spectral width (max) ${ }^{\text {a }}$ | 0.65 | 0.6 | nm |
| Average launch power, each lane (max) | 4 |  | dBm |
| Average launch power, each lane (min) | -5 |  | dBm |
| Outer optical modulation amplitude ( $\mathrm{OMA}_{\text {outer }}$ ), each lane (max) | 3.5 |  | dBm |
| Outer optical modulation amplitude ( $\mathrm{OMA}_{\text {outer }}$ ), each lane ( min$)^{\text {b }}$ | -3 |  | dBm |
| Transmitter excursion, each lane (max) | 2 |  | dBm |
| Transmitter overshoot/undershoot as a fraction of OMA outer | TBD |  |  |
| Launch power in OMA ${ }_{\text {outer }}$ minus TDECQ (min) | -4.6 | -4.4 | dBm |
| TDECQ, each lane (max) | 4.5 |  | dB |
| Average launch power of OFF transmitter, each lane (max) | -30 |  | dB |
| Extinction ratio, each lane (min) | 2.5 |  | dB |
| Transmitter transition time, each lane (max) | 17 |  | ps |
| $\mathrm{RIN}_{12} \mathrm{OMA}$ (max) | -131 |  | $\mathrm{dB} / \mathrm{Hz}$ |
| Optical return loss tolerance (max) | 12 |  | dB |
| Encircled flux ${ }^{\text {c }}$ | $\geq 86 \%$ at $19 \mu \mathrm{~m}, \leq 30 \%$ at $5 \mu \mathrm{~m}$ |  |  |

a RMS spectral width is the standard deviation of the spectrum
${ }^{\mathrm{b}}$ Even if TDECQ is less than 1.4 dB , outer OMA (min) must exceed this value

If measured into type A1a. 2 or type A1a.3, or A1a.4,
50 um fiber, in accordance with IEC 61280-1-4.

## Receive Characteristics

| Description | Value |  | Unit |
| :---: | :---: | :---: | :---: |
|  | OM4 50m | OM4 100m |  |
| Signaling rate, each lane (range) | $53.125 \pm 100 \mathrm{ppm}$ |  | GBd |
| Modulation format | PAM4 |  | - |
| Center wavelength (range) | 842 to 868 |  | nm |
| Damage threshold (min) ${ }^{\text {a }}$ | 5 |  | dBm |
| Average receive power, each lane (max) | 4 |  | dBm |
| Average receive power, each lane (min) ${ }^{\text {b }}$ | -6.9 |  | dBm |
| Receive power each lane ( $\mathrm{OMA}_{\text {outer }}$ ) (max) | 3.5 |  | dBm |
| Receiver reflectance | -12 |  | dB |
| Stressed receiver sensitivity ( $\mathrm{OMA}_{\text {outer }}$ ), each lane (max) ${ }^{\text {c }}$ | -1.9 |  | dBm |
| Receiver sensitivity ( $\mathrm{OMA}_{\text {outer }}$ ), each lane (max) ${ }^{\text {d }}$ | max (-5, SECQ -6.4) |  | dBm |
| Conditions of stressed receiver sensitivity test ${ }^{\text {e }}$ |  |  |  |
| Stressed eye closure for PAM4 (SECQ), lane under test | 4.5 |  | dB |
| OMA ${ }_{\text {outer }}$ of each aggressor lane ${ }^{f}$ | 3.5 |  | dBm |

[^0]
## Test Methodology

Test methodology is based on Clause 138.

| Description | Value |  | Unit |
| :--- | :---: | :---: | :---: |
|  | OM4 50 m | OM4 100 m |  |
| Half-symbol-rate filter bandwidth | 26.5625 |  | GHz |
| TDECQ reference response bandwidth* | 21.0 | 15.0 | GHz |
| Number of taps on T-spaced FFE | 9 |  |  |

Constraint on position of the cursor tap: Tap 1, 2, 3, 4, or 5 has the largest magnitude with a minimum value of 0.7 .

* TDECQ reference response -3dBe bandwidth is for the best fit $4^{\text {th }}$ order Bessel-Thompson filter to the combined fiber modal and chromatic dispersion modeled as a Gaussian LPF, and the receiver modeled as a $4^{\text {th }}$ order Bessel-Thompson filter with bandwidth of 26.5625 GHz .


## Illustrative Link Power Budget

| Parameter | Reach Objective A |  |  | Reach Objective B |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | OM3 | OM4 | OM5 | OM3 | OM4 | OM5 |  |
| Effective modal bandwidth at $850 \mathrm{~nm}^{\text {a }}$ | 2000 | 4700 |  | 2000 | 4700 |  | MHz.km |
| Power budget (for max TDECQ) | 6.3 |  |  | 6.5 |  |  | dB |
| Operating distance | 0.5 to 30 | 0.5 to 50 |  | 0.5 to 60 |  |  | m |
| Channel insertion loss ${ }^{\text {b }}$ | 1.6 | 1.7 |  | 1.7 | 1.9 |  | dB |
| Allocation for penalties (for max TDECQ) ${ }^{\text {c }}$ | 4.6 |  |  | 4.6 |  |  | dB |
| Additional insertion loss allowed | 0.1 |  |  | 0.2 |  |  | dB |

a Per IEC 60793-2-10
b The channel insertion loss is calculated using the maximum distance specified and cabled optical fiber attenuation of $3.5 \mathrm{~dB} / \mathrm{km}$ at 850 nm plus an allocation for connection and splice loss given in 138.10.2.2.1
${ }^{c}$ Link penalties are used for link budget calculations. They are not requirements and not meant to be tested.

## Acknowledgments

Gratefully acknowledge many discussions and feedback from
Vipul Bhatt
Roberto Rodes
Lance Thompson
Ken Jackson
David Lewis
Mark Nowell
Ryan Latchman
Ilya Lyubomirsky
Tonmoy Mukherjee
Greg Le Cheminant
Mike Robinson
Behrooz Nakhkoob
Chakravartula Nallani
Laura Giovane
Prashant Chavarkar
Rashit Nabiev

## References

1. Jonathan King, "100 Gb/s PAM4 VCSEL links - feasibility, strawman link budget," June 2019, T11-2019-00161-v000.pdf
2. Paul Kolesar, " 802.3 cm draft 1.0 comment 3 numerical analysis," kolesar_3cm_01_1118.pdf has expressions for modal dispersion of OM3, OM4, and OM5 fibers.
3. Jonathan King, "Channel wavelength ranges for 400GBASE-4.2 OM3 and OM4 effective bandwidth, modal and chromatic dispersion included," king_3cm_adhoc_01_062818.pdf.
4. John Abbott, Steve Swanson, and Steve Garner, "Multimode chromatic dispersion," abbott_3db_adhoc_01_080620.pdf.
5. Chris Cole, "802.3cu D1.1 PMD Spec Proposed Changes," cole_3cu_01b_0120.pdf.
6. Roberto Rodes, Greg D Le Cheminant, and Vipul Bhatt, "Update on Overshoot Spec," rodes_3cu_01a_052620.pdf.
7. Piers Dawe, "TDECQ and SRS," dawe_3cd_01b_0518.pdf.

Appendix

## Link Budget for OM4 50m and OM4 100m

802.3 db
53.125 GBd
50 m
802.3db
53.125 GBd

100m OM4


## Link Budget: Comparing 50G and 100G

```
802.3cd
50GBASE-SR
26.5625 GBd
100m OM4
```

```
802.3db
100GBASE-xR
53.125 GBd
100m OM4
```




[^0]:    
    
    ${ }^{\text {c }}$ Measured with conformance test signal at TP3 for the BER specified.
    ${ }^{d}$ Receiver sensitivity is informative and is defined for a transmitter with a SECQ up to 4.5 dB .
    e These test conditions are for measuring stressed receiver sensitivity. They are not characteristics of the receiver

