

HOST TO MODULE APPLICATIONS AND HOST OPTIONS FOR LINEAR I/O

IEEE P802.3DB 100 GB/S, 200 GB/S, AND 400 GB/S

SHORT REACH FIBER TASK FORCE

AD HOC TELECONFERENCE, 15 OCTOPER 2020

Brandon Gore, Rich Mellitz, Tom Palkert October 2020

OVERVIEW

•Applications that will benefit from a linear interface

- Latency comparison
- Power comparison
- •Host Interface Options for 100G I/O ports
 - ASIC to On package Optics
 - ASIC to Optical Engine Echip
 - ASIC to COBO
 - ASIC to front panel

•Switch Design Example

WHAT APPLICATIONS WILL USE LINEAR?

•Networking:

Reduced cost and power

•High performance compute:

reduced latency, lower cost/power

•Al cluster:

reduced latency, lower cost/power

•5G/telecom:

• Solves synchronization problems (ppp, IEEE 1588)

Good info: https://www.lightwaveonline.com/webcasts .

TYPICAL LATENCY OF OPTICAL LINK ARCHITECTURES

800G-SR8 POWER DISSIPATION

WHAT ARE THE OPTIONS FOR A 100G HOST INTERFACE?

1: 5 dB ASIC to On package Optics

2: 8-10 dB ASIC to Optical Engine Echip with Socket as specified in OIF CEI-112G-XSR

3: 8-10 dB ASIC to On Package Optical as specified in CPO JDF and OIF CEI-112G-XSR

- 4: ASIC to COBO as shown in COBO MSA
- 5: 11 dB ASIC to front panel socket as specified in 802.3ck Clause 162
 - Note: 100G Server NIC will comply with Clause 162 channel

6: 16 dB ASIC to front panel socket as specified in 802.3ck Annex 120G

112G Channel: ASIC to Optical Engine Echip With Socket

Assumptions:

- 92 Ohms
- Width: 28um
- Spacing 80um
- Surface roughness: 0.1um
- Dielectric: 3.3
- Loss tangent: 0.0044
- Via Hole: 60/50um
- Pad size is 100um / 200um

Courtesy of TE

DIRECT DRIVE CO-PACKAGED

Courtesy of Facebook

ASIC TO COBO AS SHOWN IN COBO MSA

11 dB ASIC to front panel socket as specified in 802.3ck Clause 162

16 dB ASIC to front panel socket as specified in 802.3ck Annex 120G

WHAT IS OIF-112G-XSR?

Spec is written for low latency (minimal FEC) channels with no connector

 $BER = 10^{-9}$ for 8 dB channel

 $BER = 10^{-8}$ for 10 dB channel

WHAT INTERFACES WILL USE A LINEAR SPEC?

5 dB ASIC to On Package Optics:

Yes, Shortest channels, no connectors 8-10 dB ASIC to Optical Engine Echip with Socket Yes: Low Insertion loss, Socket shows good Signal integrity 8-10 dB ASIC to On Package Optical as specified in CPO JDF Yes: Low Insertion Loss, good Signal Integrity ASIC to COBO as shown in COBO MSA Probably: COBO has not specified 100G channels 11 dB ASIC to front panel socket as specified in 802.3ck Clause 162 Yes: Channel simulations show good results

16 dB ASIC to front panel socket as specified in 802.3ck Annex 120G:

- Probably too much loss

Switch design supporting re-timed, linear, copper and backplane channels

