Clause 104 Maintenance Requests #3

Karl Peterson

Heath Stewart

AHEAD OF WHAT'S POSSIBLE™

Overview

Item	Updated?
SCCP PSE/PD Watchdog Timer Overlap	No
SCCP C _{IN_CLASS}	Yes
\rightarrow SCCP t_{REC}	Yes
\rightarrow SCCP t_{RESET} Timing	New
\rightarrow SCCP $t_{READSLOT}$ Timing	Yes
\rightarrow SCCP $t_{WRITESLOT}$ Timing	Yes
Reduce T _{F, min}	New

PSE and PD SCCP Timers Overlap

► PSE Table 104-4

Item	Parameter	Symbol	Unit	Min	Max	Class	Туре	Additional information
8	Classification time	T _{Class}	ms		366	AllClasses 0 to 9	All	See 104.4.5
					<u>1300</u>	Classes 10 to 15		

PD Table 104-7

15	SCCP watchdog timeout	T _{SCCP_watchd}	ms	150	200	All <u>A.</u> B. C. D	See 104.5.5
				<u>1000</u> <u>1300</u>	<u>1300</u> 2000	<u>E</u>	

SCCP Watchdog Timer

15	SCCP watchdog timeout	T _{SCCP_watchd}	ms	150	200	All <u>A.</u> B. C. D	See 104.5.5
				<u>1000</u> <u>1300</u>	<u>1300</u> 2000	<u>E</u>	

Technical, 802.3cg, Page 93, Table 104-7, Item 15

Comment:

The PSE and PD SCCP timers overlap. If all commands are executed at maximum timings the PD timeout can occur too aggressively.

Suggested Remedy:

Change SCCP, min:max for Class E from 1000ms:1300ms to 1300ms:2000ms.

Need to Address: Consensus

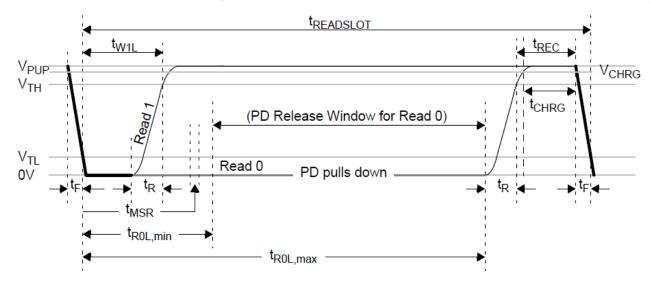
Technical, 802.3cg, Page 93, Table 104-7, Item 6b

Need to Address: Consensus

Solution Details: Consensus

Comment

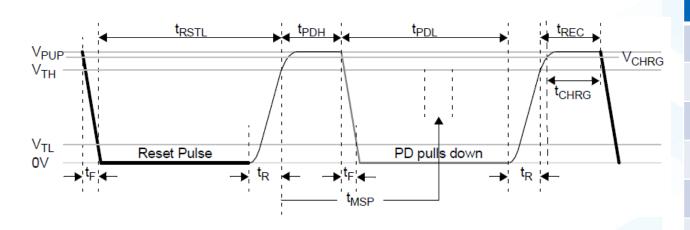
- C_{IN CLASS} is limited to ensure that excessive rise and fall times do not interfere with SCCP
 - Other timing parameters are affected by C_{IN_CLASS}
 - t_R and t_F were generous and can already accommodate C_{IN CLASS} of up to 0.8uF
- C_{IN CLASS}, max is 0.4uF for Type E
- This value is unnecessarily restrictive and potentially infeasible
 - A reservoir cap is required to maintain PD operation during Reset commands


Suggested Remedy

Modify Table 104-7, Item 6b

6b	Input capacitance during DO_CLASSIFICATION state	C _{IN_Class}	μF		0.2	All <u>A,</u> B, C, D	All classes Applies during tR and tF only.
				=	0.4 0.8	<u>E</u>	

SCCP t_{REC} Timing


Parameter	Min	Max
t _{REC}	0.27 <u>0.5</u>	0.33
ŧ _{CHRG}	0.2	
¥ _{CHRG}	0.9×V _{PUPmin}	

- t_{REC} should be treated like t_{CHRG}
 - t_{REC} max timing is already constrained by t_{READ/WRITESLOT}
 - Real world slew rates between V_{TH} and V_{PUP}, rising, cannot be accommodated by existing timing relationships
 - Propose: Only a min should be specified, increase min to track C_{IN CLASS} change
- t_{CHRG} introduces confusion without adding value
 - t_{CHRG} was intended to enable reservoir capacitor recharge but instead interferes by over-constraining charge
 - Propose: Remove as redundant to t_{REC}

Need to Address: Consensus

SCCP Reset Command Timing

Parameter	Min	Max
t _F	0.025	0.25
t _{RSTL}	8	10.5
t _{PDH}	0.7	1.3
t _{MSP}	1.8	2.2 <u>2.4</u>
t _{PDL, E}	2.8	5.2
t _{PDL, E w/ CRM}	21	31 <u>39</u>
t _R	0.025	0.5
t _{REC}	0.27 <u>0.5</u>	0.33

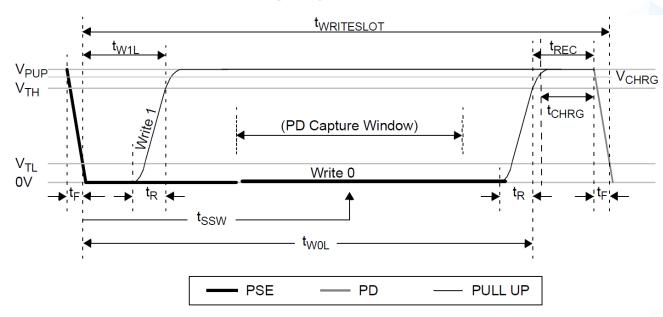
- C_{IN CLASS} change lengthens real-world Reset component timings
- ► T_{PDL} was by far the tightest PD timing accuracy requirement
 - Make rationale and economically feasible by increasing to ~+/-20%
- Incorporate t_{RFC} change as proposed previously

Propose: Changes as shown

Need to Address: Consensus

SCCP t_{READSLOT} Timing

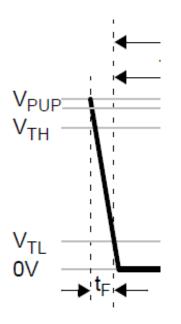
Parameter	Min	Max
t _F	0.025	0.25
t _{MSR}	0.9	1.1 <u>1.3</u>
t _{ROL}	1.75	3.25
t_R	0.025	0.5
t _{REC}	0.27 <u>0.5</u>	0.33
t _{READSLOT}		3.83 <u>5</u>


- Late changes to Read Slot component timing affected t_{READSLOT} but were not accounted correctly
 - Original t_{READSLOT,max} did not correlate to sum of components
- Original calcs did not account for PSE and PD discrepancies for t_R and t_F in end-to-end systems
- Incorporate t_{REC} change as proposed previously

Propose: Changes as shown

Need to Address: Consensus

SCCP twriteslot Timing


Parameter	Min	Max
t _F	0.025	0.25
t _{W1L}	0.09	0.61 <u>0.64</u>
t _{WOL}	1.8	2.2 <u>2.6</u>
t_R	0.025	0.5
t _{REC}	0.27 <u>0.5</u>	0.33
t _{WRITESLOT}		2.78 <u>3.85</u>

- Original calcs did not account for PSE and PD discrepancies for t_R and t_F in end-to-end systems
- C_{IN CLASS} change lengthens real-world Write Slot component timings
- Incorporate t_{REC} change as proposed previously
- Propose: Changes as shown

Need to Address: Consensus

SCCP t_F Timing

Parameter	Min	Max
t _F	0.025 <u>0</u>	0.25

- t_{F,min} is over-specified and serves as a design recommendation while serving no interoperability value
 - Strong negative effect on economic feasibility
- Propose: Change as shown

Need to Address: Consensus

Figure 104-10 Reset command

Technical, 802.3cg, Page 95, Figure 104-10

Comment

V_CHRG and t_CHRG requirements are limiting without bringing value to the standard.

Suggested Remedy

Modify Figure 104-10 as shown.

Remove V CHRG and associated voltage line.

Remove t_CHRG arrow and text.

Remove timing reference dashed line at right end of t_CHRG arrow.

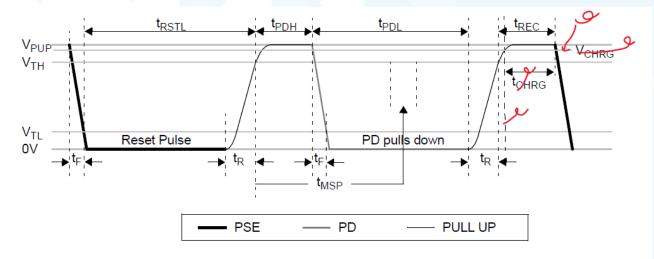


Figure 104–10—Reset command timing diagram

Figure change based on proposed changes on slide 6

Figure 104-11 Write 0/1 slot

Technical, 802.3cg, Page 96, Figure 104-11

Comment

V_CHRG and t_CHRG requirements are limiting without bringing value to the standard.

Suggested Remedy

Modify Figure 104-11 as shown.

Remove V CHRG and associated voltage line.

Remove t_CHRG arrow and text.

Remove timing reference dashed line at right end of t_CHRG arrow.

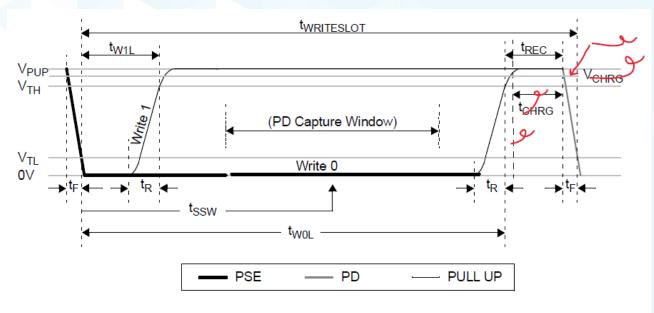


Figure 104–11—Write 0/1 slot timing diagram

Figure change based on proposed changes on slide 6

Figure 104-12 Read 0/1 slot

Technical, 802.3cg, Page 96, Figure 104-12

Comment

V_CHRG and t_CHRG requirements are limiting without bringing value to the standard.

Suggested Remedy

Modify Figure 104-12 as shown.

Remove V CHRG and associated voltage line.

Remove t_CHRG arrow and text.

Remove timing reference dashed line at right end of t_CHRG arrow.

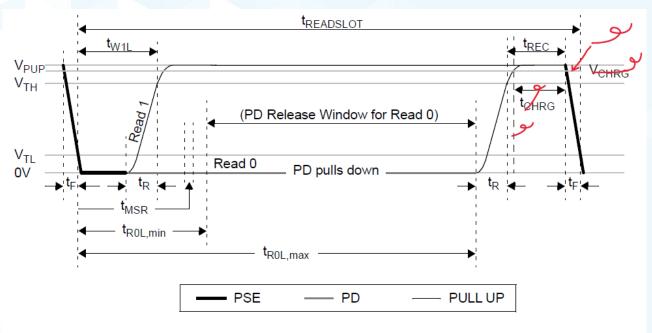


Figure 104–12—Read 0/1 slot timing diagram

Figure change based on proposed changes on slide 6

Sample Changes

Item	Parameter	Symbol	Unit	Min	Max	PSE/PD Type	Additional information
6 <u>a</u>	Write Time Slot	t _{WRITE} SLOT	ms	2.7	3.3	<u>A, B, C,</u> <u>D</u>	
				=	2.78 3.85	<u>E</u>	
<u>6b</u>	Read Time Slot	<u>t</u> readslot	ms	2.7	3.3	<u>A, B, C,</u> <u>D</u>	
				=	3.83 5	<u>E</u>	
7	Recovery Time	t _{REC}	ms	0.27	0.33	All A, B, C, D	
				<u>0.5</u>		<u>E</u>	
8	Write 0 Low Time	$t_{ m W0L}$	ms	1.8	2.2	All- A, B, C, D	
				1.8	<u>2.6</u>	<u>E</u>	
9	Write 1 Low Time	t _{W1L}	ms	0.08	0.25	<u>A, B, C,</u> <u>D</u>	
				0.09	0.61 0.64	E	