IEEE P802.3df D1.1 2nd Task Force review comments

CI 124	$S C$	124.8.5	P107	L1

Stassar, Peter Huawei

Comment Type TR Comment Status X

The text in the last bullet under 124.8.5 "The 400GBASE-DR4-2 or 800GBASE-DR8-2 transmitter is tested using an optical channel with dispersion and insertion loss as specified for 100GBASE-FR1 in 140.7.5.2, and optical return loss at the maximum for optical return loss tolerance specified in Table124-6." was agreed as a resolution to comment \#130 to D1.0. The embedded compliance channel requirements are somewhat indirect and it would be much clearer if a special section be created with details and especially a Table with channel requirements, following the style of 151.8.5.1, especially because there is no precedence for channel requirements for DR type PMDs over 2 km .
SuggestedRemedy
Create a new subclause 124.8.5.1 with channel requirements for 400GBASE-DR4,
400GBASE-DR4-2, 800GBASE-DR8, and 800GBASE-DR8-2, following the specific proposal in a presentation
Proposed Response
Response Status
0

Cl $\mathbf{1 7 1}$	SC 171.3	P181	L3
de Koos, Andras	Microchip Technology	\# 2	

Microchip Technology
Comment Type T Comment Status X
From 802.3cx (D3.3) Clause 90.7.2, an MII extender device should avoid insertion/deletion of alignment markers and idles. But as described in Clause 171, there is no provision to do this in the 800GXS Sublayer

I can make a presentation to explain this further, if needed.
"NOTE 5-When TX NUM BIT CHANGE and RX NUM BIT CHANGE are not available (e.g., over physical interfaces such as instantiated $\overline{\text { xMII or AUI), it is recommended to avoid }}$ insertion and removal of Idles, alignment markers, and codeword markers in the sublayers below the xMII/AUI, when possible, to reduce timestamping accuracy impairments (see Annex 90A)."

SuggestedRemedy

There should be a provision that an MII Extender device (PHY 800GXS + standard 800G PHY) can optionally avoid any modification to the MII stream, and any modification of the position of alignment markers or codeword markers with respect to the MII, between the input and output.
Proposed Response
Response Status
0

IEEE P802.3df D1.1 2nd Task Force review comments

$C l 90$	$S C 90$	P86	L8
Brown, Matt	Huawei		\# 5

CI 162	$S C 162.8 .1$	P123	$L 37$
Ran, Adee	Cisco	\# 8	

Comment Type T Comment Status X
IEEE 802.3cx has introduced two new optional signals (RX NUM BIT CHANGE and
TX NUM BIT CHANGE) at the PCS service interface (xMII) used for time synchronization that are not defined in the 800GBASE-R PCS or the DTE/PHY 800GXS.

SuggestedRemedy
Define these optional signals in the 800GBASE-R PCS and DTE 800GXS service
interfaces (800 GMII) and as inputs to the PHY 800GXS (service interface below). For a definition of these signals refer to Clause 90 as appropriate. A presentation will be provided.
Proposed Response
Response Status

$C l 124$	$S C 124.11 .3 .3$	$P 113$	$L 35$
Ran, Adee	Cisco	\# 6	

Ran, Adee Cisco

Comment Type E Comment Status X
"interface 7-4-1: <...>" - where is that one defined? Is it also IEC 61754-7-4?

SuggestedRemedy

Add "as defined in IEC 61754-7-4" after the interface name.
(If it's another document, add that instead, and make sure the document is listed in 1.3).
Proposed Response Response Status 0
Cl $162 \quad$ SC $162.1 \quad$ P117 \quad L4
Ran, Adee Cisco

Comment Type ER Comment Status X

In the published 802.3ck-2022, the definition of frame loss ratio is in 1.4.344.
Also in 163.1.
SuggestedRemedy
Change "1.4.275" to "1.4.344", in both clauses.
Proposed Response Response Status 0

Comment Type E Comment Status \mathbf{X}
The location of the "NOTE" in Figure 162-2 is unusual.
SuggestedRemedy
Move the NOTE label to the lower left of the figure.
Proposed Response
Response Status \mathbf{O}

Cl 162	$S C 162.9 .4$	$P 125$	$L 15$
Ran, Adee	Cisco	\# 9	

Comment Type ER Comment Status X

In the published 802.3ck-2022, the subclause reference for "Signaling rate" in Table 162-
11 has been deleted. The change in the first row is not required anymore.
SuggestedRemedy
Delete the struck-out subclause reference, and delete "the first row and" in the editorial instruction.
Proposed Response Response Status 0

Cl 162	$S C 162.14 .3$	P129	L35
Ran, Adee	Cisco	\# 10	

Comment Type ER Comment Status \mathbf{X}
In the published 802.3ck-2022, the reference for item PCS400 is 162.1
SuggestedRemedy
Change 162.9.4.8 to 162.1
Proposed Response Response Status 0

IEEE P802.3df D1.1 2nd Task Force review comments

$C l 167$	$S C 167.8 .1$	$P 148$	$L 41$
Ran, Adee	Cisco		\# 11

Ran, Adee
Comment Type \quad ER \quad Comment Status
120.5.11.2.2 is now included in this draft.

SuggestedRemedy
Make 120.5.11.2.2 an active cross reference.
Proposed Response Response Status O

$C l 167$	$S C 167.10 .3 .4$	$P 155$	$L 12$
Ran, Adee	Cisco	$\# 12$	

Ran, Adee Cisco
Comment Type E Comment Status X
"interface 7-4-1: <...>" - where is that one defined? Is it also IEC 61754-7-4?
SuggestedRemedy
Add "as defined in IEC 61754-7-4" after the interface name.
(If it's another document, add that instead, and make sure the document is listed in 1.3).
Proposed Response Response Status 0

$C l$	167	$S C$	167.11.4.6	P158

Ran, Adee Cisco
Comment Type T Comment Status X
The status of items OC15 through OC20 includes "AFI:", which makes them conditional on an angled fiber interface. However, the reference 167.10.3.4 also specifies flat fiber interfaces.

The value/comment needs to be different for angled and flat.

SuggestedRemedy

Add or change PICS items for 167.10.3.4 as appropriate.
Proposed Response Response Status

$C / 167$	$S C$	167.11 .4 .6	$P 158$	$L 37$

Ran, Adee Cisco

Comment Type T Comment Status X
The value/comment for OC18 includes "or per ANSI/TIA-604-18-A designation FOCIS $18 \mathrm{~A}-$ $1-0$ or FOCIS 18 R-1x16-1-0-1-2-0".

These do not appear in the referenced subclause 167.10.3.4.
Also in OC19.

SuggestedRemedy

Align the value/comment and the subclause text.
Proposed Response Response Status 0

CI 169	SC 169.5	P169	L9
Ran, Adee	Cisco	\# 15	

| Ran, Adee | Cisco |
| :--- | ---: | ---: |

The skew constraints for $800 \mathrm{~Gb} / \mathrm{s}$ in ns are the same as those for earlier generations, as early as $40 \mathrm{~Gb} / \mathrm{s}$, Table 80-8.

The size of PCS buffers required for deskewing grows linearly with the data rate; the size is quite large even at 400 G , and would be doubled at 800 G , due to the doubling of the number of PCS lanes. The current skew limit of 160 ns at the PCS receive requires about 150 kilobits per port just for deskewing. This affects both latency and power consumption across the industry.

The original skew limits were probably exaggerated even for 40G, and there is no need to carry them on for new technologies and new PCS designs. The numbers we set in 802.3df will also affect hosts and modules (with XS) in 802.3 dj , so are worth considering carefully now.

The numbers below are in "UI" of a PCS lane equal to 37.64706 , although most skews are created on physical interfaces where the real UI is 18.82 ps

- Limit of Skew generated at SP1 is currently 770 "UI", it can safely be reduced to 256 "UI" (512 UI of a PMD, or 8 clock cycles in a typical SerDes)
Limit of Skew generated at SP2 is currently 1142 "UI", allowing additional skew of ~350 "UI" by the PMA in the module; this can safely be reduced to 128 "UI" (4 clock cycles of a typical SerDes; 384 "Ul" including the reduced SP1)
Limit of Skew generated at SP3 is currently 1434 UI, allowing additional skew of ~290 "UI" by the PMD; this can safely be reduced to 128 "UI" (4 clock cycles of a typical SerDes; 512 "UI" including the reduced SP2)
- Limit of Skew generated at SP4 is currently 3559 UI, allowing additional skew of 2125 "UI" (80 ns, $\sim 16 \mathrm{~m}$ of fiber) by the media; this can safely be reduced to $\sim 4 \mathrm{~m}$ of fiber or 512 "UI" (1024 "UI" including the reduced SP3)
- Limit of Skew generated at SP5 is currently 3852 UI, allowing additional skew of ~ 300
"Ul" by the PMD; this can safely be reduced to 128 "UI" (4 clock cycles of a typical SerDes; 1152 "UI" including the reduced SP4)
- Limit of Skew generated at SP6 is currently 4250 UI, allowing additional skew of ~ 400
"UI" by the PMA; this can safely be reduced to 128 "UI" (4 clock cycles of a typical SerDes; 1280 "UI" including the reduced SP5)
- Limit of Skew generated at the PCS receive is currently 4781 UI, allowing additional skew of ~530 "Ul" by the PMA collocated with the PCS; this can safely be reduced to 128 "UI" (4 clock cycles of a typical SerDes; 1408 "UI" including the reduced SP6)

The result could be a reduction of the allowed skew by 70%, which allows a significant saving in PCS buffer size.

The suggested remedy lists skew as an exact number of "UI" and an approximate number in ns (unlike the current table). It can also be the other way around.

SuggestedRemedy

Skew point | max skew ns (approx.) | max skew Ul
SP1| $6.8 \mid 256$

SP3 13. 6
SP3 $13.6 \mid 512$
SP5 $27.2 \mid 102$
SP5 |30.6|115
SP6 | 34 | 1280
PCS input | 37.4 | 1408
Change skew limits in the PCS, PMA, and PMD clauses accordingly.
Proposed Response

Response Status 0

CI 169	$S C 169.5$	P169	$L 38$
Ran, Adee	Cisco	\# 16	

Comment Type T Comment Status X

Skew variation is dominated by SP4 minus SP3 - the media contribution - which is currently $3.4-0.6=2.8 \mathrm{~ns}$, corresponding to more than 0.5 m of fiber.

It seems unlikely that fibers dynamically "shrink" or "expand" (effectively) that much.
is suggested to reduce this contribution by a factor of 4 , to 0.7 ns (about 14 cm of fiber) This will affect the maximum skew variation at points below SP4 too.

SuggestedRemedy

Change the values in the SP4 row and below
SP4|1.3|69
SP5 | 1.5 | 80
SP6 | 1.7 | N/A
At PCS receive | 1.9 | N/A
Change skew variation limits in the PCS, PMA, and PMD clauses accordingly Proposed Response Response Status 0

IEEE P802.3df D1.1 2nd Task Force review comments

CI 169	$S C 169.6$	P169	L48
Ran, Adee	Cisco	\# 17	

$C l$	172	$S C$ 172.2.4.1.1	P198
Ran, Adee	Cisco	L37	\# 19

Comment Type
TR
Comment Status X

The FEC degrade functionality in clause 119 is not useful, especially at $100 \mathrm{~Gb} / \mathrm{s}$ per lane signaling. It is now common knowledge that correlated errors (which can occur due to DFEs and other reasons) can cause FEC failure even when the average SER is "good", so the average SER that this feature measures is not enough to predict when errors are going to occur.

We now have a better way to predict FEC performance through the codeword bin counters, which can be accessed through management; the FEC degrade "feature" should not be carried over to 800G Ethernet.
SuggestedRemedy
Delete 169.6 and 171.5, and edit other places where FEC degrade is mentioned in this draft to remove this feature.

Replace all references to the FEC degrade in clause 119 with text stating that FEC degrade is not defined for the 800GBASE-R PCS and XS.
Proposed Response Response Status 0

$C l 171$	$S C$	171.3.2	P183	$L 23$

Ran, Adee Cisco
Comment Type E Comment Status X
"defined for the 32:8 PMA defined in 173.3"
The first "defined" is superfluous. Compare to the previous paragraphs, which do not have it.
SuggestedRemedy
Delete the first instance of "defined".
Proposed Response Response Status 0

Comment Type TR Comment Status X
Table 172-1 has "reset" as the first column, but reset is not defined in clause 172.
Similarly, LBLOCK_T, EBLOCK_T, T_TYPE and the block types C, T, S, D, ENCODE, and tx_raw are not defined anywhere in this draft.

SuggestedRemedy

Add text pointing to the definitions of LBLOCK_T and EBLOCK_T in 119.2.6.2.1, reset and tx_raw in 119.2.6.2.2, and T_TYPE and ENCODE in 119.2.6.2.3.

Proposed Response Response Status 0

CI 172	$S C$ 172.2.4.1.1	P198	$L 40$	$\# 20$

Ran, Adee Cisco

Comment Type TR Comment Status X
Table 172-1 column "T_TYPE (tx_raw_i-1)" has cells with the strings " $\mathrm{C}+\mathrm{T}$ " and " $\mathrm{S}+\mathrm{D}$ ". These seem to be based on the state diagram convention that "+" is a logical-OR, but this is not a state diagram, and the letters are not conditions, so it isn't very clear. Using "or" would be preferable (as in the similar Table 172-4)

In addition, for each of these two strings there are two rows with two values in "T_TYPE (tx_raw_i)" column; these can be merged with the word "or" as well.
SuggestedRemedy
Merge rows 2 and 5 to a single row with columns:
" 0 | C or T | C or S | ENCODE (tx_raw_i)".
Merge rows 3 and 4 to a single row with columns:
" 0 | S or D | D or T | ENCODE (tx_raw_i)".
Proposed Response Response Status 0

IEEE P802.3df D1.1 2nd Task Force review comments

$C l 172$	$S C$	172.2 .4 .3	$P 199$	$L 10$

Ran, Adee Cisco

Comment Type TR Comment Status X
If the two scramblers are initialized to the same value and have the same input, their outputs will be equal. This may cause various problems when PCSLs from the two flows are muxed together into the same physical lane, such as pairs of identical PAM4 symbols.

The scrambler specification goes back to 49.2 .6 which says "there is no requirement on the initial value for the scrambler". But implementations may force some initial value, e.g. during reset, and with the new concern, some guidance should be given

A presentation with more details will be supplied.

SuggestedRemedy

Add the following paragraph in 172.2.4.3
Although there is no requirement on the initial value of each scrambler, if an
implementation sets the scrambler state at any time (e.g., when reset is asserted), the two scramblers should be set to different states."
Proposed Response Response Status 0

$C l$	172	$S C$	172.2.4.4	P200

Ran, Adee Cisco
Comment Type E Comment Status \mathbf{X}
The PCS AM tables do not convey to the reader the structure of the AMs (common and unique contents).

This can be improved by splitting the "Encoding" column into 4 columns:
CM0, CM1, CM2 (straddled, the same values for all lanes)
UPO (unique per lane)
CM3, CM4, CM5 (straddled, the same values for all lanes)

- The rest (unique per lane)

The two tables can also be joined to one table with 32 rows

SuggestedRemedy

Change tables 172-2 and 172-3 as described
Consider merging the two tables.
Proposed Response Response Status
SC 172.2.5.8.

Comment Type TR Comment Status X
Table 172-4 has "reset" as the first column, but reset is not defined in clause 172.
Similarly, LBLOCK R, EBLOCK R, R TYPE, and the block types E, S, D, T, C, DECODE, and rx_raw are not defined anywhere in this draft.

SuggestedRemedy
Add text pointing to the definitions of LBLOCK_R and EBLOCK_R in 119.2.6.2.1, reset and rx_raw in 119.2.6.2.2, and R_TYPE and DECODE in 119.2.6.2.3.
Proposed Response
Response Status O

CI 172	$S C$ 172.2.5.8.1	P204	L23	\# 24
Ran, Adee	Cisco			

Ran, Adee Cisco

Comment Type TR Comment Status \mathbf{X}
In Table 172-4, row 3, column "R_TYPE (rx_coded_i)", the value is "S or D or T or C".
The possible R_TYPE values (based on 119.2.6.2.3) are C, LI, S, T, D, and E; LI is not valid for clause- 172 (per 172.2.3, EEE and low power idle are not supported). Therefore, "S or D or T or C " is equivalent to "not E ". This excludes only the combination "E | E".

However, the combination " $E \mid E$ " matches the second row, and therefore results in the same rx_raw, EBLOCK_R. So having R_TYPE(rx_coded_i-1)=E with any value of R_TYPE(rx_coded_i) would result in EBLOCK_R.

This means the table can be simplified and made more readable.
SuggestedRemedy
Change the third row to the following contents:
"0 | E | any block type | EBLOCK_R"
Proposed Response Response Status 0

IEEE P802.3df D1.1 2nd Task Force review comments

$C l 172$	$S C$	172.3 .6	$P 209$	$L 34$

| Ran, Adee | Cisco |
| :--- | :--- | :--- |
| Comment Type \quad T \quad Comment | |

The PMA lane muxing is specified with restrictions intended to ensure that all codewords are represented on each physical lane (and ideally have the same BER).

In practice, devices might use muxing that does not meet these restrictions, and the PCS has to work with any muxing scheme. In some schemes, the four FEC decoders may have different BER and different codeword bin counts. This information can be important for link performance analysis and prediction.

It is suggested to have separate counters for each flow. This is sufficient because, within each flow, the BER seen by the two codewords is inherently the same, due to the checkerboard pattern. Also, FEC_cw_counter in 172.3.5 is the same for both flows and need not be duplicated.
SuggestedRemedy
Replace the FEC_codeword_error_bin_i variables with two sets of variables,
flow<j>_FEC_codeword_error_bin_i, where j goes from 0 to 1.
Add MDIO addresses for these variables and update variable mapping tables as appropriate.

Proposed Response Response Status 0

$C l 173$	$S C 173.3$	P215	L49
Ran, Adee	Cisco		\# 26

Ran, Adee Cisco

Comment Type ER Comment Status X
"The PHY XS:IS SIGNAL.request primitive is generated through a set of SIL that reports signal health"
"SIL" is defined in 173.2 as a function, not a set

SuggestedRemedy

Change the quoted sentence to "The PHY_XS:IS_SIGNAL.request primitive is generated through a signal indication logic (SIL) function that reports signal health".

$C l$	173	$S C$	173.4.2.1	$P 220$

Ran, Adee Cisco

Comment Type TR Comment Status X

As observed in comment \#6 against D1.0, the existing restrictions enable a muxing scheme where one of the two PCS flows is always assigned to the LSBs of the PAM4 symbols, while the other flow is always assigned to the MSB.
This scheme (labeled "option B" in ran 3df 01a 2212) will cause an increase of $x 34$ in the frequency of uncorrectable errors in the link partner, compared to the scheme that was assumed for the baseline proposal, which splits the LSBs equally between the two flows ("option A").

Comment \#6 suggested restricting the muxing further to prevent using "option B " in the transmitter. The receiver is required to tolerate any muxing order, so transmitters using "option B" would be interoperable, but they should not be considered compliant.

Straw polls taken during the resolution of comment \#6 had inconclusive results indicating need for additional information. In discussions since then, no specific examples of applications that would break by the additional restrictions have been found. These restrictions are therefore suggested again. If there is no consensus to have them as mandatory requirements, they can be added as recommendations.

A presentation providing further explanations and justification for the suggested restrictions will be provided.

SuggestedRemedy

In 173.4.2.1 and 173.4.2.2, change the second list item to
The multiplexing function has an additional constraint that each of the 8 output lanes contain two unique PCSLs from PMA client lanes $\mathrm{i}=0$ to 15 followed by two unique PCSLs from PMA client lanes $\mathrm{i}=16$ to 31 ".

In 173.4.2.3, change the second list item to
"The 4 PCSLs received on an input lane shall be mapped to an output lane such that the Gray-coded PAM4 symbol sequence on the output lane is identical to the Gray-coded PAM4 symbol sequence on the input lane (see 173.4.7.1)."

Modify wording and/or add illustrations with editorial license.
Proposed Response Response Status 0

Proposed Response Response Status 0

IEEE P802.3df D1.1 2nd Task Force review comments

$C l \mathbf{1 7 3}$	$S C$ 173.4.7.2	$P 223$	$L 1$
Ran, Adee	Cisco		\# 28

$\begin{array}{lrl}\text { Ran, Adee } & \text { Cisco } \\ \text { Comment Type } & \text { ER } \quad \text { Comment Status } \mathbf{X}\end{array}$
The title "Precoding for PAM4 encoded lanes" is used in clause 120, but in clause 173 all lanes are PAM4 encoded.

SuggestedRemedy
Change the title to "Precoding".
Proposed Response Response Status 0

Cl 173	$S C$	173.4.7.2	P223	L3

Ran, Adee Cisco

Comment Type T Comment Status X
The first paragraph of this subclause effectively excludes 800GAUI-8 C2M, making precoding impossible over this interface.

Precoding can also be beneficial for C2M in certain cases, and it is likely implemented as part of the SerDes in many products. Therefore, it would be good to allow it as an optiona feature that, if available, can be enabled as required by the application.

This would only apply in the interface lanes connected to the AUI, and not to those that are connected to the PMD, so the optical signal will not be affected.

The fact that this option is not explicitly defined for 400GAUI-4 C2M etc. does not preclude it from being defined in this project.

SuggestedRemedy

With editorial license, make both precoding and decoding optional for PMAs lanes that are part of a 800GAUI-8 C2M link (this may affect both Clause 167 and annex 120G).
Proposed Response Response Status 0

$C l 173$	$S C 173.4 .11$	$P 223$	$L 47$	\# 30

Ran, Adee Cisco

Comment Type ER Comment Status X
120.5.11.2 is now included in this draft.

SuggestedRemedy
Make 120.5.11.2 an active cross reference.
Proposed Response Response Status

IEEE P802.3df D1.1 2nd Task Force review comments

CI 45	$S C$ 45.2.3.25	$P 47$	$L 31$	\# 33

Ran, Adee Cisco

Comment Type E Comment Status \mathbf{X}

45.2.3.25 describes the lane alignment register, with one subclause per bit; this continues in 45.2.3.26 and in the new 45.2.3.26a. With 32 lanes, we have 32 subclauses that are essentially the same.

This is repetitive, not helpful for readers, and will require further editorial work when future PCSs are defined (for example 1.6TBASE-R)

It may be better to have one subclause, 45.2.3.25.1, with a full definition of "lane 7 aligned", and have all the remaining bits defined together using something like "defined similarly to 45.2.3.25.1 ${ }^{-1}$ as done for example in 45.2.3.49 and 45.2.3.50.

This can remove most of the text in 45.2.3.25 (for register 3.52), 45.2.3.26 (for register 3.53), and 45.2.3.26a (for register 3.54). It may also be possible to merge these three subclauses into one (similar to 45.2.3.50).

The new text should address the number of lanes that exist in every PCS when referring to clause 82, clause 119, and clause 172

Similar changes can be applied in 45.2.4.16 and 45.2.4.16a for PHY XS, and in 45.2.5.16 and 45.2.5.16a for DTE XS.

SuggestedRemedy

Change the structure as suggested in the comment, with editorial license.
Proposed Response Response Status 0

Cl 45	$S C$ 45.2.3.26.a	P49	L 39	\#

Ran, Adee Cisco

Comment Type TR Comment Status X
The new subclauses 45.2.3.2.26.a through 45.2.3.2.26.d refer to lanes 23 through 20 which exist only in the 800G PCS (clause 172). References to 82.2.19.2.2 are not required in these subclauses.

Similarly in 45.2.3.26a. 1 through 45.2.3.26a. 8 for lanes 31 through 24

SuggestedRemedy

In 45.2.3.26.a, change "This bit reflects the state of am_lock[19] (see 82.2.19.2.2) or amps_lock[19] (see 172.2.6.2.2)" to "This bit reflects the state of amps_lock[19] (see 172.2.6.2.2)".

Apply similar changes in 45.2.3.26.b through 45.2.3.26.d and in 45.2.3.26a. 1 through 45.2.3.26a.8.

Proposed Response Response Status 0

$C / 45$	$S C$ 45.2.3.26.11	P51	$L 34$	\# 35
Ran, Adee	Cisco			

Comment Type ER Comment Status X
Stray "1" in "(see 1119.2.6.2.2 and 172.2.6.2.2)."
SuggestedRemedy
Change "1119" to "119".
Proposed Response Response Status
0

IEEE P802.3df D1.1 2nd Task Force review comments

$C I 45$	$S C$ 45.2.4.16a.1	$P 64$	$L 18$	\# 36
Ran, Adee	Cisco			

Ran, Adee Cisco
Comment Type TR Comment Status X
The new subclauses 45.2.4.16a. 1 through 45.2.4.16a. 8 refer to lanes 31 through 24, which exist only in the 800GXS (clause 171, based on clause 172 PCS). References to
119.2.6.2.2 are not required in these subclauses.

Also in 45.2.5.16a subclauses for the DTE XS
SuggestedRemedy
In 45.2.4.16a.1, change "This bit reflects the state of amps_lock[31] (see 119.2.6.2.2 and 172.2.6.2.2)." to "This bit reflects the state of amps_lock[31] (see 172.2.6.2.2)."

Apply similar changes in 45.2.4.16a.2 through 45.2.4.16a. 8 and in 45.2.5.16a.1 through 45.2.5.16a.8.

Proposed Response Response Status 0

Cl 116	$S C ~ 116.1 .4$	$P 89$	$L 9$	\# 37
Ran, Adee	Cisco			

Comment Type ER Comment Status \mathbf{X}

Table 116-5 column order is different from the order in the published Std $802.3 \mathrm{db}-2022$ and Std 802.3ck-2022.
SuggestedRemedy
Reorder the columns to align with the published standard
Proposed Response Response Status 0

Cl 124	$S C$	124.8.9.1	P109
Ran, Adee	Cisco	$L 11$	\# 38

Ran, Adee

Comment Type $\mathbf{E} \quad$ Comment Status \mathbf{X}
The parameter in this subclause is called "receiver sensitivity (OMA_outer)" in Table 124-7 and in 124.8.9.2. For 400GBASE-DR4 it is optional, but I assume the name should be the same.
SuggestedRemedy
Insert "(OMA_outer)" after "receiver sensitivity", 3 instances in this subclause.
Proposed Response Response Status 0

IEEE P802.3df D1.1 2nd Task Force review comments

$C l 172$	$S C$	172.2.4.1.1	P198	L28

Nicholl, Shawn AMD

Comment Type TR Comment Status X

To allow use of the PCS stateless encoder at both $400 \mathrm{~Gb} / \mathrm{s}$ and $800 \mathrm{~Gb} / \mathrm{s}$ data rates,
place the new sub-clause 172.2.4.1.1 (PCS stateless encoder) into Clause 119 directly.
SuggestedRemedy
Propose to create a new sub-clause 119.2.4.1.1 containing the current text of 172.2.4.1.1 (PCS stateless encoder), except replace (twice) "800GMII vector(s)" with "MII vector(s)". Or replace with "tx_raw vector(s)" instead.

In sub-clause 119.2.4.1 (Encode and rate matching), change "... state diagram as shown in Figure 119-14." to "... state diagram as shown in Figure 119-14 or (for 400GBASE-R PCS or 800GBASE-R PCS) by the stateless encoder specified in 119.2.4.1.1."

In sub-clause 172.2.4.1 (Encode, rate matching, and block distribution), change "stateless encoder specified in 172.2.4.1.1." to "stateless encoder specified in 119.2.4.1.1."
Proposed Response
Response Status 0

$C l$				
172	$S C$	172.2.5.8.1	$P 204$	$L 10$

Nicholl, Shawn AMD

Comment Type TR Comment Status X
To allow use of the PCS stateless decoder at both $400 \mathrm{~Gb} / \mathrm{s}$ and $800 \mathrm{~Gb} / \mathrm{s}$ data rates, place the new sub-clause 172.2.5.8.1 (PCS stateless decoder) into Clause 119 directly.
SuggestedRemedy
Propose to create a new sub-clause 119.2.5.8.1 containing the current text of 172.2.5.8.1 (PCS stateless decoder), except replace "800GMII vector" with "MII vector". Or replace with "rx raw vector" instead.

In sub-clause 119.2.5.8 (Decode and rate matching), change "... state diagram as shown in Figure 119-15." to "... state diagram as shown in Figure 119-15 or (for 400GBASE-R PCS or 800GBASE-R PCS) by the stateless decoder specified in 119.2.5.8.1."

In sub-clause 172.2.5.8 (Block collection, decode, and rate matching), change "stateless decoder specified in 172.2.5.8.1." to "stateless decoder specified in 119.2.5.8.1."

Cl 45	SC 45.2.4.4.a	P59	L59
Dudek, Mike	Marvell		\#4

Comment Type T Comment Status X
The sub-clause title is wrong
SuggestedRemedy
Change "400G capable" to "800G capable"
Proposed Response
Response Status

Cl 45	SC 45.2.3	P46	L26	\# 45

Huber, Tom
Nokia
Comment Type E
Comment Status X
There is some ambiguity in the use of green vs black coloring for the clause references in Table 45-233. In my understanding, green text is used to indicate a reference to a clause (or a table or figure) that is not itself present in this amendment

SuggestedRemedy

Assuming my understanding of the convention is correct, since 45.2.3.25, 45.2.3.49, and 45.2.3.58 are all present in 802.3 df (because they are being modified), they should be in black text rather than green text.
Proposed Response Response Status 0

Cl 45	SC 45.2.4.4.a	P59
Huber, Tom	Nokia	
Comment Type E	Comment Status X	
The title of the new clause should be 800G capable rather than 400G capable		
SuggestedRemedy		
Change 400G to 800G.		
Proposed Response	Response Status 0	

IEEE P802.3df D1.1 2nd Task Force review comments

C/ FM	SC FM	P1	L31
Dawe, Piers	Nvidia	\# 47	

CI 1	SC 1.4.145a	P31	L1
Dawe, Piers	Nvidia		\# 48

Comment Type E Comment Status X

"adds MAC parameters, Physical Layers, and management parameters" but we talk about
"the Physical Layer" like "the sky", although we have many "Physical Layer types" (and
Physical Layer device types). This should be more like the text in the PAR 5.2.b.
Compare other projects' self descriptions:
adds Physical Layer specifications and management parameters;
includes Physical Layer specifications and management parameters;
adds $2.5 \mathrm{~Gb} / \mathrm{s}, 5 \mathrm{~Gb} / \mathrm{s}, 10 \mathrm{~Gb} / \mathrm{s}, 25 \mathrm{~Gb} / \mathrm{s}$ and $50 \mathrm{~Gb} / \mathrm{s}$ Physical Layer specifications and management parameters;
adds $400 \mathrm{~Gb} / \mathrm{s}$ Physical Layer specifications and management parameters;
adds physical layer specifications and management parameters;
includes Physical Layer specifications and management parameters.
As the PAR says, a feature of this project is "based on $100 \mathrm{~Gb} / \mathrm{s}$ per lane signaling technology".
don't see that we are adding any MAC parameters (the PAR says "Define Ethernet MAC parameters" and it looks like we are re-using what we have).

SuggestedRemedy
Change these three texts:
Page 1 line 30 :
This amendment includes Media Access Control parameters for $800 \mathrm{~Gb} / \mathrm{s}$ and Physical Layers and management parameters for $400 \mathrm{~Gb} / \mathrm{s}$ and $800 \mathrm{~Gb} / \mathrm{s}$ operation.
Page 3, Abstract:
The amendment adds MAC parameters, Physical Layers, and management parameters for the transfer of IEEE 802.3 format frames at $400 \mathrm{~Gb} / \mathrm{s}$ and $800 \mathrm{~Gb} / \mathrm{s}$.
Page 13, self description:
This amendment includes Physical Layer specifications and management parameters for $400 \mathrm{~Gb} / \mathrm{s}$ and $800 \mathrm{~Gb} / \mathrm{s}$ operation.
All to:
This amendment adds Physical Layer specifications and management parameters for 400 Gb / s and $800 \mathrm{~Gb} / \mathrm{s}$ based on based on $100 \mathrm{~Gb} / \mathrm{s}$ per lane signaling.

Proposed Response Response Status 0

Dawe, Piers Nvidia
Comment Type E Comment Status X
Missing definitions for 800GAUI-n C2C and 800GAUI-n C2M

SuggestedRemedy

Add 1.4.145a $800 \mathrm{~Gb} / \mathrm{s}$ Attachment Unit Interface (800GAUI-n): Two kinds of physical instantiation of the PMA service interface to extend the connection between $800 \mathrm{~Gb} / \mathrm{s}$ capable PMAs over n lanes, used for chip-to-chip (C2C) or chip-to-module (C2M) interconnections. One width of $800 \mathrm{GAUI}-\mathrm{n}$ is defined: the eight-lane $800 \mathrm{GAUI}-8 \mathrm{C} 2 \mathrm{C}$ and 800GAUI-8 C2M. (See IEEE Std 802.3, Annex 120E.)
Proposed Response
Response Status 0
Cl 45 SC 45.2.1.7.5 \quad P40

Dawe, Piers
Nvidia
Comment Type T Comment Status X
D1. 0 comment 118: Missing entries in transmit fault, *receive fault and transmit disable tables*

SuggestedRemedy

In the tables for receive fault and transmit disable, include rows for 100GBASE-VR1, 100GBASE-SR1, 200GBASE-VR2, 200GBASE-SR2, 400GBASE-VR4, 400GBASE-SR4, 800GBASE-VR8, 800GBASE-SR8 and 400GBASE-DR4, 400GBASE-DR4-2,
800GBASE-DR8, 800GBASE-DR8-2 Revise the rubrics.
Proposed Response Response Status 0

IEEE P802.3df D1.1 2nd Task Force review comments

$C l 45$	$S C$ 45.2.1.138	P44	L25
Dawe, Piers	Nvidia		\# 50

$C l ~ 45$	$S C$ 45.2.3.48a	$P 53$	$L 46$
Dawe, Piers	Nvidia	\# 52	

Comment Type T Comment Status X

It's not clear if Table 45-107-50GAUI-n, 100GAUI-2, 200GAUI-n, and 400GAUI-n chip-tochip transmitter equalization, receive direction, lane 0 register bit definitions - applies for 100G/lane AUIs or not. Most of 120F implies it doesn't except 120F.3.2.4 Receiver interference tolerance "Receiver interference tolerance is defined by the procedure in Annex 93C with the exception that transmitter equalization is configured by management (see 120D.3.2.3)".

SuggestedRemedy

If it applies, update 45.2.1.135, 45.2.1.136, 45.2.1.137, 45.2.1.138 to include 800GAUI-n. If it doesn't, say so in these sections because the terms "100GAUI-2, 200GAUI-n, and 400GAUI-n" with unqualified n are too wide now, and address their use (or not) in 120F.3.2.4.
It would help to add these registers to MDIO/PMA variable mapping tables, either in the PMA clauses where there are such tables already, or the AUI annexes.
Proposed Response Response Status 0

CI 45	$S C$	45.2 .3 .19	P47
Dawe, Piers	Nvidia	L28	\# 51

Nvidia
Comment Type E Comment Status X
BASE-R PCS test-pattern control register (Register 3.42)
.. Scrambled idle test patterns are defined for 25/40/50/100/200/400GBASE-R PCS only.

SuggestedRemedy

Add 800G

Proposed Response Response Status

Comment Type E Comment Status X
The text should mention that this is an optional feature. Also, 172.3 .5 doesn't define the register (Clause 45 does that), it defines the counter.

SuggestedRemedy
For example, change
See 172.3.5 for a definition of this register.
See
See 172.3.5 for a definition of this optional counter.
Proposed Response Response Status 0

Cl 45	SC 45.2.3.48b	P54	L20
Dawe, Piers	Nvidia	\# 53	

Comment Type E Comment Status X
assignment of bits ... is identical to that of bin 1
SuggestedRemedy
for bin $1 ?$
Proposed Response Response Status 0

Cl 45	SC 45.2.3.48b	P54	L23
Dawe, Piers	Nvidia		
Comment Type E	Comment Status		
The text should mention that this is an optional feature.			

SuggestedRemedy

Add: these counters are optional.
Proposed Response Response Status 0

IEEE P802.3df D1.1 2nd Task Force review comments

$C / 171$	SC 171.2	P180
Dawe, Piers	Nvidia	L45

Cl $\mathbf{1 7 1}$	$S C 171.3$	P182	L45
Dawe, Piers	Nvidia		\# 58

Comment Type E Comment Status X
FEC degrade is an optional feature of the PCS. As the AUI inside the 800GMII Extender shouldn't be making many errors, the main interest for the DTE 800GXS is in receiving any FEC degrade from the line PCS in the module. The host could have got similar information from the module's management interface. So if it's optional for the PCS it should be optional for the DTE 800GXS, although one could split receiving a FEC degrade signal, and generating FEC degrade from a bad BER, into two separate options.

SuggestedRemedy

Delete "with the additional FEC degrade signaling defined in 171.5"
Proposed Response Response Status 0

CI 171 SC 171.3	P181	L8
Dawe, Piers		Nvidia
Comment Type \quad T	Comment Status \mathbf{X}	

The FEC degrade feature is not very interesting for the errors on the AUI inside the 800GMII Extender, and if it is optional for the PCS, it should be optional for the PHY 800GXS in the same module.

SuggestedRemedy

Delete "Additional FEC degrade signaling defined in 171.5 is included."
Proposed Response Response Status

Cl 171	SC 171.3	P182	L9
Dawe, Piers	Nvidia		\# 57

Comment Type E Comment Status X

Figure 171-2 contains the rogue capitals that have just been removed from Figure 172-2.
Also, "66B" should be "66-bit", twice

SuggestedRemedy

Fix
Proposed Response
Response Status
Comment Type T Comment Status \mathbf{X}
As in Figure 172-2, functional block diagram for the PCS
SuggestedRemedy
Please indicate the position of the 800GMII
Proposed Response
Response Status 0

Cl 171	SC 171.5	P183	L49
Dawe, Piers	Nvidia		\# 59

Dawe Piers
Comment Type
Comment Status X
According to 171.8 .3 , FEC degrade for 800GXS. According to 116.6 and 118.5 .3 , it's optional for 200GXS and 400GXS. It's optional for the 800GBASE-R PCS too.

SuggestedRemedy
Add a sentence: FEC degrade signaling is optional.
Proposed Response Response Status 0

Cl $171 \quad$ SC 171.7	P185	L46	\# 60
Dawe, Piers		Nvidia	
Comment Type	E	Comment Status X	

Broken variable name but it looks like there is space in this table to avoid it
SuggestedRemedy
Make the right column two characters wider, making the third column narrower.
Proposed Response Response Status 0

CI 171	SC 171.8.4.3	P190	$L 50$
Dawe, Piers	Nvidia		\# 61

Dawe, Piers

E
Comment Status \mathbf{X}
According to 82.2.3.6, "deletion" doesn't get a special capital letter
SuggestedRemedy
Change Deletion to deletion
Proposed Response Response Status

IEEE P802.3df D1.1 2nd Task Force review comments

$C / 171$	$S C$	171.8.4.4	$P 191$
Dawe, Piers	Nvidia	$L 5$	\# 62

Comment Type T Comment Status X

The two scramblers must be desynchronised to it's not exactly as in Clause 49 without qualification

SuggestedRemedy
Point to 172 instead of 49
Proposed Response Response Status 0

$C l$	172	$S C$	172	P194

Dawe, Piers Nvidia

Comment Type E Comment Status X
This style of title follows 49. Physical Coding Sublayer (PCS) for 64B/66B, type 10GBASE-
R. "for" isn't great but I see why it was there in 49. Back then, 64B/66B was new and a big
thing, to be contrasted with $8 \mathrm{~B} / 10 \mathrm{~B}$. Here, it's only an internal step on the way to
256B/257B with RS-FEC. Type R is very familiar now.
By the way, the copy in 172.7.2.2 differs.
SuggestedRemedy
Change the title of 172 from "172. Physical Coding Sublayer (PCS) for 64B/66B, type 800GBASE-R" to 172. Physical Coding Sublayer (PCS), type 800GBASE-R" Here and in the PICS.
Proposed Response Response Status 0

Cl 172	SC 172.1.3	P194	L47
Dawe, Piers	Nvidia		\# 64

Comment Type E Comment Status X
There are three things with essentially the same title
172. Physical Coding Sublayer (PCS) for 64B/66B, type 800GBASE-R
172.1.3 Physical Coding Sublayer (PCS)
172.1.3 Physical Coding Sublayer (PCS
172.2 Physical Coding Sublayer (PCS)
172.2 Physical Coding Sublayer (PCS)

A new reader does not see something that indicates it's an introduction.
Compare e.g. 171:
171. 800GMII Extender and 800GMII Extender Sublayer (800GXS)
171.1.1 Summary of major concepts
(and then the various hard specification subclauses are one level higher)
Also note
173.1.3 Summary of functions
173.4 Functions within the PMA

SuggestedRemedy

Change the title of 172.1.3 to "Summary of major concepts", "Principal features of the 800GBASE-R PCS" or equivalent
Change the title of 172.2 to "Detailed specifications of the 800GBASE-R PCS" or equivalent
For consistency, 137.4 Functions within the PMA could be something like Detailed specifications of functions within the PMA
Proposed Response Response Status 0

$C l$				
172	$S C$	172.1.3	P195	L5

Dawe, Piers Nvidia

Comment Type E Comment Status X
Reed-Solomon encoding (decoding) the 257-bit blocks. As this code is "systematic", it can be decoded by throwing away the parity block, but that's not the point. Also, it would be good to mention FEC.
SuggestedRemedy
Change to "Encoding (decoding with correction) the 257-bit blocks with Reed-Solomon FEC
Proposed Response Response Status 0

IEEE P802.3df D1.1 2nd Task Force review comments

$C l 172$	$S C 172.1 .3$	$P 195$	$L 5$
Dawe, Piers	Nvidia		\#66

$C l 172$	$S C$ 172.2.1	P197	L36
Dawe, Piers	Nvidia		\# 69

Comment Type E Comment Status X
Scrambling, lane synchronisation and lane re-ordering (or identification) are important enough that they should appear in this list, particularly as alignment markers appear without explanation at item e.

SuggestedRemedy
Please add them
Proposed Response
Response Status

$C l 172$	$S C$	172.1 .4	P195
Dawe, Piers	Nvidia	L21	\# 67

Dawe, Piers Nvidia
Comment Type E Comment Status X
"It is important to note that": pompous fluff, and singling out a point that isn't so special. Section 8, for example, uses "while this specification defines" three times with "It is important to note that" and three times without.

SuggestedRemedy

Delete. This is the only one in this draft.
Proposed Response Response Status 0

Cl $\mathbf{1 7 2}$ SC 172.2.1	P197	L31	\# 68
Dawe, Piers		Nvidia	
Comment Type E	Comment Status X		

Comment Type E Comment Status X
Change of subject without indication. According to line 5, there are only two processes, Tx and Rx.
SuggestedRemedy
Insert "In | for the receive direction | Receive process". Reconcile whether PCS
Synchronization process is a component of the Receive process or not.
Proposed Response Response Status 0

Dawe, Piers Nvidia
Comment Type E Comment Status X
and then reordered, deskewed, and the align_status flag is set.

SuggestedRemedy

and then reordered and deskewed, and the align_status flag is set.
Proposed Response Response Status 0

$C l 172$	$S C$ 172.2.4.1.1	P198	$L 32$	\# 70

Dawe, Piers Nvidia

Comment Type T Comment Status X
alternate ... alternative: shouldn't it be the same word each time? But the second one is unnecessary and there is no other stateless encoder.
SuggestedRemedy
Delete "alternative". Also in 172.2.5.8.1.
Proposed Response Response Status 0

Cl 172	SC 172.2.4.1.1	P1		L 37	\# 71	
Dawe, P	Nvidia					
Comme	ye E	Comment Status				
Usually we write function(something) with no space						
SuggestedRemedy						
Delete "alternative". Also in Table 172-4.						
Proposed Response		Response Status 0				

IEEE P802.3df D1.1 2nd Task Force review comments

Cl 172	$S C$ 172.2.4.1.1	P198	L 39
Dawe, Piers	Nvidia	\# 72	

Cl 172	SC 172.2.4.4	P199	L23
Dawe, Piers	Nvidia	\# 75	

Comment Type T Comment Status X
Because Figure 119-14 specifically doesn't apply, we need cross-references to define LBLOCK_T, C, T, S, ENCODE and so on

SuggestedRemedy

Provide the cross-references. Also for the stateless decoder in 172.2.5.8.1.
Proposed Response Response Status 0

Cl 172	$S C$	172.2.4.1.1	P198
Dawe, Piers	Nvidia	$L 40$	\# 73

| Dawe, Piers | Nvidia |
| :--- | :--- | :---: |
| Comment Type \quad T \quad Comment Status X | |

No indication as to how to add block types
SuggestedRemedy
If you mean "or" as in Table 172-4, change + to or, 4 times.
Proposed Response Response Status 0
Cl 172 SC 172.2.4.3 \quad P199

Dawe, Piers Nvidia
Comment Type TR Comment Status X
The two scramblers must be desynchronised to avoid a gross failure of signal statistics after restricted bit multiplexing the two flows. It is hard to say whether they need to be offset by more than the Skew limit at SP1 or whether any offset is enough. However, it's very easy to provide a big offset by choosing the scramblers' initial conditions appropriately
SuggestedRemedy
Say that the two scramblers should be started so that their outputs are offset by at least enough so that they will not be aligned when Skewed as allowed when forming the 8-lane PMA/PMD signals.
Proposed Response Response Status 0

Comment Type E
 Comment Status X

"n"
SuggestedRemedy
Usually n is a number of things (cardinal number) and i is an index (ordinal) number. Wouldn't i (italic) be more usual?
Proposed Response Response Status 0

Cl $\mathbf{1 7 2}$	SC 172.2.4.4	P199	L25
Dawe, Piers	Nvidia		\# 76

Dawe, Piers

Nvidia

Comment Type E Comment Status X
It would help the reader understand tables 172-2 and 3 to provide some of the information from 119.2.4.4. Also to save reverse engineering the tables, we can say what the difference between the tables is.

SuggestedRemedy

Add: In Table 172-2 and Table 172-3, CM0 to CM5 are the same for all PCS lanes, UM0 to UM5 are unique per lane, and UP0 to UP2 are a pad per lane. UPO to UP2 for lanes 16 to 31 are the same as those for lanes 0 to 15, respectively.
Proposed Response Response Status 0

Cl 172	$S C$ 172.2.4.4	P200	L5
Dawe, Piers	Nvidia		\# 77
Comment			

Comment Type E Comment Status X
These tables are still very hard to use because the ~headers don't line up with the ~columns
SuggestedRemedy
For the header row, insert a space after each comma
Proposed Response Response Status 0

IEEE P802.3df D1.1 2nd Task Force review comments

CI 172	SC 172.2.4.4	P201	L39
Dawe, Piers	Nvidia		\#8

$C l 172$	$S C$ 172.2.6.1	P204	L 38
Dawe, Piers	Nvidia		\# 81

Comment Type E Comment Status X
x
SuggestedRemedy
Use multiplication symbol, twice
Proposed Response Response Status 0

$C l 172$	$S C$	172.2.4.9	P202	L52

Dawe, Piers Nvidia
Comment Type T Comment Status X
This mentions the test-pattern control register (bit 3.42.3). But does 3.42.7 Scrambled idle test-pattern apply also?

SuggestedRemedy
Please clarify, and please refer to 172.3.1 PCS MDIO function mapping
Proposed Response Response Status
0
Cl $172 \quad$ SC 172.2.5.2 \quad P203

Dawe, Piers Nvidia
Comment Type E Comment Status X
PCS lanes can be received on different lanes of the service interface from which they were originally transmitted - needs rewording?
SuggestedRemedy
Suggest:
The signals received by a PCS can contain PCSLs in a different arrangement to the lane ordering at the transmitting PCS. The PCS receiver is capable of receiving PCSLs in any arrangement.
Proposed Response
Response Status

Dawe, Piers Nvidia
Comment Type $\mathbf{T} \quad$ Comment Status \mathbf{X}
"its value is to be incremented": by how much? Does it depend on the circumstances?
SuggestedRemedy
Add "by one", or whatever is meant
Proposed Response
Response Status O

$C l 172$	$S C$ 172.2.6.2.2	P205	L21	\# 82

Dawe, Piers Nvidia

Comment Type E Comment Status X
this variable mapped per Table
SuggestedRemedy
this variable is mapped per Table
Also at line 28
Proposed Response Response Status 0

$C l \mathbf{1 7 2}$	$S C$ 172.3.3	P209	L20
Dawe, Piers	Nvidia	\# 83	

Dawe, Piers
comment Status \mathbf{X}
Without the information in 119.3.3, the title is ambiguous or misleading. This isn't a count of uncorrected codewords which would include the ones that didn't have errors and didn't need correcting; it's a count of errored codewords that were not corrected.
SuggestedRemedy
Add sentence: This counter counts FEC codewords that contain errors that were not corrected.
Proposed Response Response Status 0

IEEE P802.3df D1.1 2nd Task Force review comments

$C l$	173	$S C 173.1 .3$	P212
Dawe, Piers	Nvidia	$L 51$	\# 84

Dawe, Piers		Nvidia
Comment Type		

Adapt the PCSL (PCS lane) formatted signal to the appropriate number of abstract or physical lanes

SuggestedRemedy
Adapt the PCSL (PCS lane) formatted signal to the appropriate number and grouping of abstract or physical lanes

Proposed Response Response Status 0

Cl 173	SC 173.1.3	P213	$L 10$
Dawe, Piers	Nvidia		\# 85

Dawe, Piers Nvidia

Comment Type T Comment Status X
In common cases (800GAUI-8) receive link status information may be used but isn't forwarded.
"Provide receive link status information in the receive direction": do we need another bullet, that when connected to a PHY XS, it provides link status information in the transmit (egress) direction?

SuggestedRemedy

Per comment
Proposed Response Response Status 0

Cl 173	SC 173.1.3	P213	L11
Dawe, Piers	Nvidia		\# 86

Comment Type E Comment Status \mathbf{X}
173.4 says "Three forms of the 800GBASE-R PMA are defined: 32:8, 8:32, and 8:8" but that information is needed earlier, in 173.1.4, 173.2 and 173.3
SuggestedRemedy
Insert a sentence here, saying that.
Proposed Response Response Status
Dawe, Piers Nvidia

Comment Type T Comment Status X
PMA:IS_UNITDATA 0:31.request would be better shown as
PMA:IS_UNITDATA_0:15.request and PMA:IS_UNITDATA_16:31.request as in Figure 172-
2. The PMA doesn't really know lane numbers, it doesn't read alignment markers, but it
needs to know the two groups to apply the restricted bit muxing rules.
The output lanes can stay as one group.

SuggestedRemedy

Show two groups of 16 input lanes, PMA:IS_UNITDATA_0:15.request and
PMA:IS_UNITDATA_16:31.request
Similarly for the 32 PHY_XS:IS_UNITDATA_0:31.indication lanes in Figure 173-4, 8:32 PMA functional block diagram.
Proposed Response Response Status
0

Cl $\mathbf{1 7 3}$	$S C$ 173.4.2	P220	$L 1$
Dawe, Piers	Nvidia		\# 88

Comment Type TR Comment Status X

Ensure that the restricted bit multiplexing rules exclude combinations of lanes and Skew that suffer the "clock content" (transition density) issue mentioned at the end of 120.5.2.

SuggestedRemedy

Per comment

Proposed Response Response Status 0

IEEE P802.3df D1.1 2nd Task Force review comments

$C l 173$	$S C$	173.4.2.1	$P 220$
Dawe, Piers	Nvidia	$L 16$	\# 89

| $C l \mathbf{1 7 3}$ | $S C$ | 173.4.2.3 | P221 |
| :--- | :---: | :---: | :---: |\quad L9 \quad \# 91

Comment Type TR Comment Status X

Avoid the bad "option B" bit muxing that Adee has described.
Fixing this is more useful than applying any restricted muxing on the XS
doubt that the language of lanes containing lanes will stretch to the ordering restriction needed, so wordsmithing to "constructed from".

SuggestedRemedy

Change
The multiplexing function has an additional constraint that each of the 8 output lanes contain two unique PCSLs from PMA client lanes $\mathrm{i}=0$ to 15 and two unique PCSLs from PMA client lanes $\mathrm{i}=16$ to 31
to
The multiplexing function has an additional constraint that each of the 8 output lanes is constructed from two PCSLs from PMA client lanes $i=0$ to 15 and two PCSLs from PMA client lanes $i=16$ to 31 , arranged so that after PAM4 encoding, the first bits of the pairs used to form PAM4 symbols are taken alternately from one of the two PCSLs from PMA client lanes $i=0$ to 15, and one of the two PCSLs from PMA client lanes $i=16$ to 31 Similarly in 173.4.2.2, or delete the restricted muxing rule from the 8:32 PMA, as the XS AUI shouldn't make enough errors to trouble the FEC.

Proposed Response
Response Status

Cl 173	SC 173.4.2.1	P220	L17
Dawe, Piers	Nvidia	\# 90	

Comment Type E Comment Status X
doubt that one can have two unique anythings. Unique means one of a kind, so if there are two, they aren't unique. I think we mean different, but as it is obvious enough from 120.5 that each PCS lane is used just once, there is no need for any such word.

SuggestedRemedy
Delete "unique", twice
Proposed Response Response Status 0

Comment Type T Comment Status X
"The 4 PCSLs received on any input lane shall be mapped to the same output lane" is ambiguous: this could mean the same lane number (which seems unnecessary) or merely that the PCSLs are kept together. (I know this text is based on my comment - apologies.)

SuggestedRemedy

Clarify. And see next comment.
Proposed Response Response Status
Cl $173 \quad$ SC 173.4.2.3 P221
Dawe, Piers Nvidia

Comment Type T Comment Status X
"The order of PCSLs from an input lane does not have to be maintained on the output
lane": but to avoid a rogue 8:8 PMA turning the benign properly bit-muxed "option A" into the defective "option B", we can't allow all possible re-ordering.

SuggestedRemedy

As there is no practical reason not to, require that the PMA output the streams of PAM4 symbols that it receives (but without requiring preservation of lane number).
Proposed Response
Response Status 0

CI 173	SC 173.4.3.1	P221	L27
Dawe, Piers	Nvidia	\# 93	

Dawe, Piers

Nvidia

Comment Type TR Comment Status X
This says "the PMA ... shall produce no more than" while 173.4.3.3 says "the PMA ... shall generate no more than"

SuggestedRemedy

If there is a difference between produce and generate, as I suspect there is, explain. If there isn't, use one word not two.
See another comment that the limits are higher than needed now.
Proposed Response Response Status 0

IEEE P802.3df D1.1 2nd Task Force review comments

Cl 173 SC 173.4.3.3	P221	L43	\# 94
Dawe, Piers	Nvidia		
Comment Type T	Comment Status \mathbf{X}		
Not clear "as well" as w			
SuggestedRemedy			
Please explain.			
Proposed Response	Response Status 0		
Cl 173 SC 173.4.5	P222	L38	\# 95
Dawe, Piers	Nvidia		

Comment Type E Comment Status \mathbf{X}
This says that the clock architecture is identical to that specified in 120.5.5.
Clocking architecture not clock architecture
Rates in 120.5.5 are based on bit rates, here bit rate is not mentioned.
120.5.5 addresses cases of 200GBASE-R and 400GBASE-R, not 800G
120.5 .5 says "... rearrangement of PCSLs between input lanes and output lanes (although
rearrangements are allowed)" but this clause has rules forbidding some rearrangements.
SuggestedRemedy
Add material to define what the clocking architecture for this clause is
Proposed Response Response Status 0

Cl 173 SC 173.5	P224	L10	\# 96
Dawe, Piers	Nvidia		

Comment Type T Comment Status X
This says MMDs 8,9 , and 10 while 173.1 .4 says $1,8,9,10$, and 11
SuggestedRemedy
Reconcile 11
Proposed Response
Response Status

Cl $\mathbf{4 5}$	SC 45.2.3.49	P54	L51
Dawe, Piers	Nvidia		\# 97

Comment Type E Comment Status X
Subject and verbs number don't match (editorial bug in base document)
SuggestedRemedy
Consider changing
The contents of the Lane 0 mapping register is valid when Lane 0 aligned bit (3.52.0) is set to one and is invalid otherwise
to content ... is ... is or contents ... are ... are
At some stage, a wider clean-up and harmonisation (contents vs. values) would be helpful.
Proposed Response Response Status 0

Cl 45	SC 45.2.3.63	P57	L8
Dawe, Piers	Nvidia	\# 98	

Comment Type E Comment Status X
See 119.3.3 and 172.3.3 for a definition of this counter.
SuggestedRemedy
See 119.3.3 or 172.3.3 for a definition of this counter.
Proposed Response Response Status 0

Cl 45	SC 45.2.4.16a	P63	L25
Dawe, Piers	Nvidia	\# 99	

Comment Type E Comment Status \mathbf{X}
5register
SuggestedRemedy
insert space. Also in 45.2.5.16a.
Proposed Response Response Status
O

IEEE P802.3df D1.1 2nd Task Force review comments

Cl 45	SC 45.2.4.17	P65	L25
Dawe, Piers	Nvidia		100

Dawe, Piers
Comment Type E \quad Comment Status \mathbf{X}
"XS described in Clause 118 and Clause 171"
But a product complies to applies to one or the other, at any time.
SuggestedRemedy
XS described in Clause 118 or Clause 171
Also in 45.2.5.17, 45.2.5.22.2, 45.2.5.22.3 and so on
Proposed Response Response Status 0

$C l 45$	$S C$ 45.2.7.12.3	P78	L10	101

Dawe, Piers Nvidia

Comment Type T Comment Status X
Base text says "these bits in register 7.48 and register 7.49 indicate the negotiated port
type. Only one of these bits is set depending on the priority resolution function" but is this correct? There are FEC options in these registers as well as port types.

SuggestedRemedy

Revise text if appropriate
Proposed Response Response Status 0

$C l$				
120	$S C$	120.5.6	P90	L6

Dawe, Piers Nvidia

Comment Type E Comment Status X
Annex 120F, which specifies the 200GAUI-2 and 400GAUI-4 interfaces for chip-to-chip applications.
Annex 120G, which specifies the 200GAUI-2 and 400GAUI-4 interfaces for chip-to-module applications.
SuggestedRemedy
Add 800GAUI-8
Proposed Response Response Status 0

Cl 124	SC 124.1	P91	L21
Dawe, Piers	Nvidia		\# 103

Comment Type
Comment Status \mathbf{X}
Need a section to explain interoperability of DRn and DRn-2. Compare 140.11 and 151.12 but this is simpler.

SuggestedRemedy
Add a new sentence "The 400GBASE-DR4 and 400GBASE-DR4-2 PMDs can interoperate with each other provided that the fiber optic cabling (channel) characteristics for
400GBASE-DR4 are met, and similarly for 800GBASE-DR8 and 800GBASE-DR8-2". This could be a new subclause 124.11a but because it's so simple this time and it helps the reader understand what these PMDs can be used for, it could be added to 124.1 before 124.1.1 Bit error ratio.

Proposed Response Response Status 0

CI 124	SC 124.2	P94	L39
Dawe, Piers	Nvidia		\# 104

Dawe, Piers

Comment Status X
If as we hope and expect, we set the bit multiplexing rules so that the transition density problem won't happen on 8-lane 800GBASE-R, this sentence and similar ones will need modification. But it remains for 200GBASE-R and 400GBASE-R, so the same point should be made in Clause 167.
SuggestedRemedy
Change: See NOTE
to: For 400GBASE-DR4 and 400GBASE-DR4-2, NOTE
Similarly in 124.7.2
Add equivalent texts in Clause 167
Proposed Response Response Status

Dawe, Piers Nvidia
Comment Type E Comment Status X
The OMAouter (max) limits are all the same (deliberately, for interoperability)
SuggestedRemedy
Change "values" to "value"
Proposed Response Response Status

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed Z/withdrawn SORT ORDER: Comment ID

IEEE P802.3df D1.1 2nd Task Force review comments

Cl $\mathbf{1 2 4}$	SC 124.7.2	P104	L27
Dawe, Piers	Nvidia		\# 106

Cl 124	SC 124.12.4.4	P115	L24
Dawe, Piers	Nvidia		\# 109

800GBASE
Comment Status X
DR8
SuggestedRemedy
Use non-breaking hyphen?
Proposed Response Response Status 0

$C l$	124	$S C$	124.8.1
Dawe, Piers	Nvidia	L9	\# 107

| Dawe, Piers | Nvidia |
| :--- | :--- | :---: |
| Comment Type \quad T \quad Comment Status \mathbf{X} | |

This has e.g. " $3,5,6$, valid 400GBASE-R signal, or 800GBASE-R signal". 138 has " 3,4
5,6 or valid 50GBASE-SR , 100GBASE-SR2, 200GBASE-SR4 or
400GBASE-SR8 signal". 167 has " $3,4,5,6$, or valid 100GBASE-VR1, 200GBASE-VR2, 400GBASE-VR4, 800GBASE-VR8, 100GBASE-SR1, 200GBASE-SR2, 400GBASE-SR4, or 800GBASE-SR8 signal". Is a non-valid 800GBASE-R signal allowed?
SuggestedRemedy
Change "valid 400GBASE-R signal, or 800GBASE-R signal" to "or valid 400GBASE-R or 800GBASE-R signal" three times.
Maybe in maintenance we should delete "valid" in multiple clauses.
Proposed Response Response Status 0

Cl 124	SC 124.8.9	P109	L1	\# 108
Dawe, Piers	Nvidia			

Comment Type E Comment Status X

Missing tab or format issue
SuggestedRemedy
fix
Proposed Response

Dawe, Piers Nvidia

Comment Type E Comment Status X

Items to OM12 depend on PMD type
SuggestedRemedy
Add major options for PMD types. These items will be conditionally mandatory.
Also, adjust:
124.12.4 PICS proforma tables for Physical Medium Dependent (PMD) sublayer and medium, type 400GBASE-DR4
F1 Compatible with 400GBASE-R PCS and PMA
Proposed Response Response Status 0

Cl 162	SC 162.1	P116	L39
Dawe, Piers	Nvidia		\# 110

Comment Type E Comment Status X
The document uses a mixture of 800GMII extender and 800GMII Extender (aside from "800GMII Extender Sublayer"
SuggestedRemedy
Make consistent
Proposed Response Response Status 0

Cl 162	$S C 162.7$	P122	L 47
Dawe, Piers	Nvidia		\# 111

Comment Type E Comment Status X
Register for lanes 1 to 37 are located at an offset from the lane 0 register.
SuggestedRemedy
Suggest: Registers for lanes 1 to 37 are located at offsets from the lane 0 register.
Proposed Response
Response Status

IEEE P802.3df D1.1 2nd Task Force review comments

$C l 167$	$S C 167.10 .3 .1 \mathrm{a}$	P	L
Dawe, Piers	Nvidia		\# 115

Comment Type T Comment Status X

Discussions at the last round indicated that "Option A (24 fibers in two rows in one
connector shell) is the least used of three connector formats for 8 -lane multimode. It should not be the first option

SuggestedRemedy
Take whatever polls are necessary to establish consensus and delete Option A.
Proposed Response Response Status 0

$C l 167$	$S C$	167.11.4.6	$P 158$	$L 13$

Dawe, Piers Nvidia

Comment Type E Comment Status X
These PICS need work to align them to the clause
SuggestedRemedy
Removing Option A will make this task simpler
Proposed Response Response Status 0

Cl 169	$S C$	169.5	P167

Comment Type E Comment Status \mathbf{x}

"as illustrated in Figure 169-7 (single 800GAUI-n interface) and Figure 169-8 (multiple
800GAUI-n interfaces)": tautology, ambiguous as one could say that a physically
instantiated AUI has an interface at each end, and the figure titles do this differently.
SuggestedRemedy
Change to "as illustrated in Figure 169-7 for a PHY with a single 800GAUI-n and in Figure 69-8 for a PHY with multiple 800GAUI-n
In Annex 173A, adjust figure titles to be consistent with the way Figure 169-7 and Figure 169-8 are done.
Proposed Response
Response Status
0

IEEE P802.3df D1.1 2nd Task Force review comments

Cl 169	SC 169.5	P169	L8
Dawe, Piers	Nvidia		\# 118

$C l 171$	$S C$	171.1 .1	$P 180$
Dawe, Piers	Nvidia	L 40	\# 121

Comment Type TR Comment Status X

These Skew limits were created 14 years ago assuming FPGAs clocked at $160 \mathrm{Mb} / \mathrm{s}$ (see e.g. https://ieee802.org/3/ba/public/may08/giannakopoulos_01_0508.pdf). As the number of bits to buffer goes up with the width, we should revisit this and take out the padding that modern FPGAs don't need. For example, if we assume $644 \mathrm{Mb} / \mathrm{s}$ clocking, we might save 38 ns out of a total of 180 ns , which is enough to be interesting.
With the current limits, the Skew can be significantly more than the FEC block time (25.6 ns), which is unfortunate; we would get better protection against error bursts on the line if the four FEC streams overlapped in time
SuggestedRemedy
Take out the allocation for slow wide FPGA internal interfaces, that are no longer
necessary, from the allocations for PMA Skew. This could be $3 / 4$ * 12.8 ns for each PMA. Make coordinated changes in the subclauses that repeat the Skew limits (e.g. 120.5.3 124.3.2, 162.6.2, 163.6.2, 167.3.2, 171.8.4.2),

Proposed Response Response Status 0

Cl $169 \quad$ SC 169.8	P171	L9	\# 119
Dawe, Piers	Nvidia		

Comment Type E Comment Status X
Same as what?
SuggestedRemedy
Change "conforms to the same notation and conventions used in 21.6 " to "conforms to the notation and conventions used in 21.6 " or "conforms to the same notation and conventions as used in 21.6".
Proposed Response Response Status 0

$C l$ 171	SC 171.1.1	P180	L39
Dawe, Piers	Nvidia		\# 120

Comment Type E Comment Status X
Some more basic, strategic concepts are missing from this list
SuggestedRemedy
Say that the 800GMII Extender uses two PCS-like entities, DTE 800GXS and PHY
800GXS, that communicate to each other over an 800GAUI-n. Say that the DTE 800GXS
is similar to the Clause 72 PCS, and the PHY 800GXS is similar but used "upside down".
Proposed Response Response Status

Comment Type E
 Comment Status X

The 800GXS doesn't support physical instantiations of the 800GAUI-n. The 800GMII
Extender uses them, or it. The XGSs connect to them or it. There are two 800GXS, not
the same as each other. A 800GAUI-n has to be physical.
SuggestedRemedy
Change "The 800GXS leverages all functions in the Clause 172 PCS and supports physical instantiations of the 800GAUI-n" to "Each 800GXS leverages all functions in the Clause 172 PCS and connects to a 800GAUI-n, as shown in Figure 171-1"
Proposed Response
Response Status

Cl $172 \quad S C ~ 172.2 .4 .9$	P202	L48	\# 122
Slavick, Jeff	Broadcom		

Comment Type T Comment Status X
To make this section agnostic to the MII rate for referencing in the future. We could refer to the service interface insteead.

SuggestedRemedy

Change "PCS at the 800GMII" to "PCS, at the PCS service interface,"
Proposed Response Response Status 0

Cl 45 SC 45.2.3.26a	P49	L39	\# 123
Slavick, Jeff		Broadcom	
Comment Type			

Comment Type T Comment Status X
df added PCS lanes 20-31, they do not exist in clause 82.
SuggestedRemedy
Remove "am_lock[\#\#] (see 82..2.19.2.2) or" from PCS lanes 20-31
Proposed Response Response Status 0

IEEE P802.3df D1.1 2nd Task Force review comments

Cl 171	SC 171.1	P179	L26
Slavick, Jeff	Broadcom		\# 124

Cl 173	SC 173.3	P215	L 43
Dawe, Piers	Nvidia		\# 127

Comment Type T Comment Status X
Table 171-1 lists the AUI as Optional but at least one of them must exist.
SuggestedRemedy
Attach a footnote to each Optional that specifies that at least one is required.
Proposed Response
Response Status

Cl 171 SC 171.7	P186	L6	\# 125
Slavick, Jeff	Broadcom		

Comment Type T Comment Status X
Table 171-3 and 171-5 map the FEC_cw_counter and FEC_codeword_error_bin counters to PCS space.

SuggestedRemedy

Create new registers in the PHY XS and DTE XS MDIO space for these counters and map them to the new registers appropriately.
Proposed Response Response Status 0

Cl 171 SC 171.3.1	P183	L3	\# 126
Slavick, Jeff	Broadcom		
Comment Type T Isn't Figure 169-3 a	Comment Status \mathbf{X} reference?		
SuggestedRemedy Change the Figure	cne to 169-3		
Proposed Response	Response Status 0		

Dawe, Piers Nvidia
Comment Type Comment Status \mathbf{X}
"For the 8:32 PMA ... In this case a PHY_XS:IS_SIGNAL.indication primitive is not received from the PHY 800GXS". Why not? The module knows if its incoming signal is good or not, so it can pass that information to the 8:32 PMA, which can e.g. squelch appropriately. This would be a normal behaviour for non-XS modules.
SuggestedRemedy

Discuss

Proposed Response Response Status 0

Cl 172	SC 172.1.3	P194	L53	\# 128
Dawe, Piers		Nvidia		

Comment Type E Comment Status X
In Section 8, "based on" appears 75 times, "based upon" 9 times. In this document, "based on" appears 11 times, "based upon" 5 times

SuggestedRemedy

Maybe we should change all the new "based upon" to "based on"
Proposed Response Response Status 0

Cl $173 \quad$ SC 173.4.8	P 223	L30	\# 129
Dawe, Piers	Nvidia		
Comment Type T	Comment Status X		

Comment Type T Comment Status X
This says that the PMA link status functions identically to that specified in 120.5.8. 120.5.8 says "the PMA shall provide link status information to the PMA client using the
PMA:IS_SIGNAL.indication primitive." That's too simple; this primitive is not carried over the AUI, and for the 8:32 PMA, link status
SuggestedRemedy
Please write out what actually happens
Proposed Response Response Status

IEEE P802.3df D1.1 2nd Task Force review comments

Cl 124	SC 124.1.1	$P 94$	L3
Opsasnick, Eugene	Broadcom		\# 130

$C l 163$	SC 163.1	P131	$L 7$
Opsasnick, Eugene	Broadcom		\# 132

Comment Type TR Comment Status X
Same as previous comment
SuggestedRemedy
Change $1.7 \mathrm{E}-12$ to $3.4 \mathrm{E}-12$
Proposed Response Response Status

Cl 162	SC 162.1	P117	$L 7$
Opsasnick, Eugene	Broadcom		\# 131

Comment Type TR Comment Status \mathbf{X}
The FLR value that results from 2.4E-4 BER is referred to in two places, in lines 7 and 10:
"This BER allocation enables a frame loss ratio lower tha $9.2 \times 10^{\wedge}-13$ after processing by the PCS ...".

And on line \#10. "... to maintain a frame loss ratio lower than $9.2 \times 10^{\wedge}-13$."
This FLR value, 9.2E-13, corresponds to a "non-interleaved" RS(544,514) FEC as used in the 50 G \& 100 G PCS. The value should be changed to $1.7 \mathrm{E}-12$ for 200 G and 400 G PCS which have 2-way interleaved FEC, and should be changed to $3.4 \mathrm{E}-12$ for 800G PCS with 4-way interleave FEC

This same issue was addressed in comment \#62 of 802.3bs D1.3:
https://www.ieee802.org/3/bs/comments/P802d3bs_D1p3_comments_final_ID.pdf\#page=1 3

The FLR scaling factor of ($1+$ MFC)/MFC should be modified to be $\left(1+2^{*}\right.$ MFC)/MFC for the 2-way interleave PCS and to $\left(1+4^{*}\right.$ MFC $) /$ MFC for the 4 -way interleaved PCS.
SuggestedRemedy
Remove 800G from this paragraph. Keep origin paragraph referring to 200G/400G, but change the FLR value to $1.7 \mathrm{E}-12$.

Add a similar pargraph after this one with references changed from 200G/400G to 800G and FLR value to $3.4 \mathrm{E}-12$.
Proposed Response Response Status

IEEE P802.3df D1.1 2nd Task Force review comments

Cl 173 SC 173.6.3	P227	L12	\# 135	Cl 120F	SC	P240	L35	\# 138	
Dawe, Piers	Nvidia			Dawe, Pi		Nvidia			
Comment Type T	Comment Status X			Comment		Comment Status X			(late)
Upstream and downs towards the core of th the MAC vs. towards	am have defined mean network and downstrea medium.	1.4.29 rds th	86. Upst NOT to	Very		ndensed, but compare			
SuggestedRemedy These could be called TOP and BOT, or A and B for above and below, picking up wording used later in this table				One, two, four, or eight independent data paths in each direction for 100GAUI-1 C2C, 200GAUI-2 C2C, 400GAUI-4 C2C, and 800GAUI-8 C2C, respectively					
Proposed Response Response Status 0				Proposed	spo	Response Status 0			
Cl 120F SC 120F. 1 P234 L35									
Dawe, Piers Nvidia									
Comment Type E Comment Status X (la									
Line 28 says "These interfaces", here we have "the interfaces"									
SuggestedRemedy									
If appropriate, change the to these at lines 35 and 42, and in 120G page 242 lines 28 and 35.									
Proposed Response Response Status 0									

Cl 120F SC 120F.2	P235	L1	\# 137
Dawe, Piers		Nvidia	
Comment Type	E	Comment Status X	
(late)			

The C2C transmitter and the receiver use PAM4 signaling.
SuggestedRemedy
The C2C transmitter and receiver use PAM4 signaling.
Proposed Response Response Status 0

