COM Simulation and Analysis for 200Gbps/Lane Chip-to-Module
Tobey P.-R. Li, Mau-Lin Wu
MediaTek
IEEE 802.3df Task Force
2022/03/16
Outline

- Overview
 - Motivation and methodology
 - Objectives

- COM simulation for 200Gbps/Lane PAM4 C2M

- Channel feasibility: key challenges

- SerDes feasibility: COM sensitivity to key parameters

- Conclusion
Motivation and Methodology

• Straw poll #4 (Feb. 24, ’22) – PAM4 for 200G/L optical PMDs (500m & 2km)
 – Q: Will be PAM4 feasible for 200G/L C2M?

• Exploration of the feasibility of 200G/L chip-to-module AUI PAM4
 – Channel & SerDes requirements?

• Channel requirements analysis – by COM v3.7 simulation
 – All available 200G C2M channels from IEEE & OSFP (total 38x)
 – Based on baseline SerDes

• SerDes feasibility – starting from COM sensitivity by sweeping key SerDes parameters
 – Provide the directions to make good trade-off between performance & power/cost of SerDes
Objectives

• Do
 – Leverage published channel materials to represent potential 200Gbase channel characteristics and evaluate their corresponding performance
 – Analyze 200G/L PAM4 C2M feasibility from the system’s point of view
 – Point out key challenges of channel – reflection (roll-off) & crosstalk
 – Direction of SerDes – COM sensitivity of key parameters

• Don’t
 – Offer the SerDes or channel solutions
C2M Channel Profile

- Channel variations mainly come from
 - Host/Module trace length & impedance
 - BGA breakout topology
 - Connector transition finger connectivity
 - Crosstalk

The objective is to explore diverse channels to assess C2M technology feasibility
- Channel ball2ball IL: 10~23 dB
- FOM_ILD: 0~3 dB

<table>
<thead>
<tr>
<th>CH Index</th>
<th>S-Parameter File</th>
<th>Crosstalk</th>
<th>Contributor</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ~ 36</td>
<td></td>
<td>1 FEXT, 1 NEXT</td>
<td>C2M model from Amphenol BGA model from Keysight</td>
<td>OSFP200GEL</td>
</tr>
<tr>
<td>37</td>
<td>KEY_C2M_200G_120G_2p5HCB_022422_Thru</td>
<td>1 FEXT, 1 NEXT</td>
<td>Rick Rabinovich</td>
<td>IEEE 802.3df: rabinovich_3df_022422</td>
</tr>
<tr>
<td>38</td>
<td>KEY_C2M_200G_120G_4p0HCB_022422_Thru</td>
<td>1 FEXT, 1 NEXT</td>
<td>Rick Rabinovich</td>
<td>IEEE 802.3df: rabinovich_3df_022422</td>
</tr>
</tbody>
</table>
COM Simulation Consideration: 200G Baseline

- **Die model**: keep the similar IL as 100G (parameters need further investigation)
- **PKG model**: 25% trace loss improvement from 100G, follows the values proposed in iof2021.596.01 (parameters need further investigation)
- **Equalization length & frequency/Rise time/Jitter/Noise**: scaled with 2x baud rate
- **DER/TX swing/TX SNR/Nonlinearity**: kept the same as 100G
- **COM version**: 3.7
- **Test case 1 (short package)**: \[z_p(TX) \ z_p(RX)] = [15 8] mm
- **Test case 2 (long package)**: \[z_p(TX) \ z_p(RX)] = [31 15] mm

* TX \(C_p = 0 \) fF as it is included in the channel model
COM Simulation for 200G/L PAM4 C2M

• Whole link budget analysis
 – To allow the interoperability among channel components
 – Analyze performance from the system’s point of view
 – Evaluate COM instead of VEC & VEO

• Whether 200G/L PAM4 C2M works?
 – If keep the same bump2bump IL target from 100G to 200G
 - IL target in 100G/L PAM4 C2M: 16 dB ball2ball + PKG loss = ~22 dB bump2bump
 – If make SerDes capability aligned from 100G to 200G

22dB bump2bump still reasonable for 200G/L C2M?
Channel Feasibility: FOM_ILD

- FOM_ILD represents reflection severity
 - Banks of floating taps (FLTs) are needed with increasing FOM_ILD
 - Roll-off in IL profile
 - Can cause severe IL degradation at Nyquist frequency
 - Can cause multiple reflections

- FOM_ILD < 1 feasible?
Channel Feasibility: FOM_ILD & Crosstalk

- Residual ISI caused by reflection may dominate noise budget
- Concerns in crosstalk
 - PAM4 feasibility: crosstalk increases with frequency
 - Particular in BGA & transition via region
200G/L PAM4 C2M Feasibility: Reach

- **Support 22dB bump2bump IL seems possible**
 - If can keep IL at frequency of interest at the close vicinity of that for 100Gb/L
 - If SerDes capability can align with increased baud rate

- **Short channel effect in test case 1 needs further investigation**
 - Will be accentuated by higher Nyquist frequency
Roll-Off in IL Profile

- Impairments in next generation have been discussed in [noujeim_3df_01_220224](#)
 - Including BGA dimensions, connector transition connectivity, and other structures

- Frequency of resonances characterizing impairments affects roll-off characteristics
 - Can cause multiple reflections, especially challenging for short channels

BGA breakout model from *Keysight via OSFP200GEL*
C2M channel with effective wipe sweep from *Amphenol via OSFP200GEL*
Impact from Roll-Off

• COM results of two channels with different resonance frequencies

<table>
<thead>
<tr>
<th></th>
<th>CH IL (dB)</th>
<th>FOM_ILD</th>
<th>COM (w/o FLT)</th>
<th>COM (wi 3*3 FLT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH 19</td>
<td>14.04</td>
<td>0.21</td>
<td>3.32</td>
<td>4.88</td>
</tr>
<tr>
<td>CH 17</td>
<td>14.17</td>
<td>2.23</td>
<td>1.89</td>
<td>3.43</td>
</tr>
</tbody>
</table>

*Max. UI span for floating taps: 80

• Roll-off in proximity of Nyquist frequency will cause multiple reflections
 – More DFE taps or banks of floating taps (FLTs) are required

• Resonances just beyond Nyquist seems not good enough
 → Required bandwidth?
Sensitivity to Transceiver Capability

- Necessity of delicate balance among performance, power, and area in SerDes design
 - Possibility of increased SerDes performance and functionality (200G baseline shown in P.6)?

- COM sensitivity check of key SerDes parameters
 - SerDes alternatives can be observed from the results of sensitivity analysis
 - For jitter, a stricter A_DD may be a complementary solution for sigma_RJ without sacrificing performance

* Scale factor = 1 → 100G values
* Scale factor = 0.5 → 200G expected values (Baseline)

• Choose critical channels with $2 < \text{COM} < 4$ for analysis
Conclusions of 200G/L PAM4 C2M

• Feasibility of 200G/L PAM4 C2M requires both channel and SerDes technology enablement
 – Keep IL profile at frequency of interest at the close vicinity of that for 100G/L
 – SerDes capability should be enhanced as higher Nyquist frequency

• Channel feasibility is analyzed with
 – Potential reach: bump2bump IL ~22 dB
 - Ball2ball (TP0 to TP1a) IL target for 200G C2M could be derived from 22 dB once the consensus of package model have been reached
 – Resonances characterizing impairments & crosstalk are observed
 – Short channel effects need further investigation

• SerDes feasibility starts with the sensitivity check of key parameters, further investigation will be conducted with the trade-off among performance, power, & area
APPENDIX
Sensitivity to Transceiver Capability

Each curve represents one channel