Analysis of FEC1 Proposals from Reuse Perspective

Xiang He, Xinyuan Wang, Nianqi Tang

Huawei Technologies, Co. Ltd.

Candidate Options of FEC1

800GbE 100Gbps/lane FEC Strategy

- Applies to 100G lanes
 - Compatible with 50G AUIs also
- End to end FEC reusing RS(544,514,10)
- A unique FEC sublayer (likely different from 200G/lane)
- Options:
 - 1. Reuse the Ethernet Technology Consortium spec
 - 66b interleaving into transcoding, 4 FEC codeword interleaving, 32 FEC lanes
 - Industry reuse
 - Fast time to market for 800GbE with 100G lanes
 - 2. Clause 119 like FEC
 - 2 FEC codeword interleaving
 - Shown in wang_b400g_01_210208.pdf
- 106.25G per lane for AUI-8

Refer to gustlin_3df_01_220118

2/15

Proposed FEC1 Options: "2x Parallel CL119" vs "Sped Up CL 119"

Expectations for Reuse of 802.3bs 200/400GbE

- From implementation perspective, leverage existing 400 GbE FEC sub-blocks.
 - 2 FEC decoders per 400 GbE FEC, each operating at 212.5 Gb/s throughput.
- From standard specification perspective, leverage Clause 119 of IEEE 802.3.
 - PCS encoded data distribution and recovery to decoder.
 - FEC lanes distribution, alignment and reorder mechanism.

Decoder Implementation Reuse Options

Reuse 400 GbE FEC Decoder Implementation in Option 1

- FEC Decoder 0,1, 2,3 all operate at 212.5 Gb/s throughput.
 - Friendly to implementations with lower clock rates.
- Identical implementation conforming to IEEE 802.3bs
 400 GbE FEC specification above PMA.
 - FEC decoders are the most complex part, taking ~40% of Rx PCS design.
- Modification:
 - Lane reorder is performed across overall 32 lanes instead of two groups of 16 lanes.
 - Interleaving is performed over 425 Gb/s throughput, so frame time is 25.6 ns.

Reuse 400 GbE FEC Decoder Implementation in Option 2

- Identical implementation conforming to IEEE 802.3bs
 400 GbE FEC above the codeword buffers.
 - FEC decoders 0,1, 2,3 all operate at 212.5 Gb/s throughput.
 - More friendly to implementations with lower clock rates.
- Modifications:
 - Lane reorder is performed over 8 lanes instead of two groups of 16 lanes – similar to 200 GbE design.
 - Codeword distribution is performed across the two pairs of decoders.
- Interleaving/de-interleaving is performed over 850
 Gb/s throughput.

Reuse 400 GbE FEC Decoder Implementation in Option 2, continued

- Each interleaved pair will be fed into a pair of 212.5 Gb/s throughput decoders.
- FEC frame time is 12.8 ns (16 cylces@1.25GHz), but 212.5Gb/s throughput decoder takes 32 cycles to take in a codeword:
 - KES requires 30 clock cycles no need to duplicate.
 - Chien Search is needs to be finished within 32 cycles.
- Total throughput is 850 Gb/s.

Further Evolution of Option 2 with More Benefits

Option 1 Could Largely Reuse CL119 Sub-clauses of IEEE 802.3bs

- Reuse IEEE 802.3 Clause 119, with some modification needed:
 - No change:
 - PCS encode and decode
 - Transcode
 - Scramble and de-scramble.
 - FEC encode and decode, including interleaving.
 - Needs modifications:
 - New function: 64B/66B block distribution.
 - AM insertion: aligned over the two flows.
 - AM lock: 32 patterns instead of 16.
 - Lane reorder and deskew: over 32 lanes.
 - Error Marking: performed over the whole 800G flow?

Option 2 Could Completely Reuse CL119 of IEEE 802.3bs

• **Completely reuse** IEEE 802.3 Clause 119:

 New sub-clauses can directly refer to the existing sub-clauses in clause 119. For example, in 802.3cd-2018:

134.5.2.7 Reed-Solomon encoder

The Reed-Solomon encoder is identical to the RS(544,514) Reed-Solomon encoder defined in 91.5.2.7.

 If FEC and PCS are two separated sublayers, text may be rearranged.

Error Marking and FLR Comparison of the Two Options

- The length of Ethernet frames affected by an uncorrectable codeword in option 2 is half of option 1.
 - Option 1 may have higher FLR than option 2 at the same post-FEC BER level.

119.2.5.3:

"when the Reed-Solomon decoder determines that a codeword contains errors that were not corrected, it shall cause the PCS receive function to set every 66-bit block within the two associated codewords to an error block (set to EBLOCK_R)."

Post FEC BER vs FLR

• Option 1 will suffer twice as many frame loss as option 2 at the same post FEC BER @1E-13.

- The FLR for option 1 will be 1.24E-10, rather than 6.2E-11, which is the specified level for 200/400 GbE.
 - Clause 122.1.1:

"For a complete Physical Layer, the frame loss ratio may be degraded to 6.2×10^{-11} for 64-octet frames with minimum interpacket gap due to additional errors from the electrical interfaces."

We can either lower the BER objective, or choose option 2 to keep the same BER and FLR.

- This contribution investigates the two proposed options of FEC1 with reuse of RS(544,514) from both implementation and standard specification perspectives.
 - Option 1 could largely reuse the existing 400 GbE implementation and standards with modifications.
 - Option 2 could largely reuse the existing 400 GbE implementation and completely reuse the existing standards.
- Option 2 has further advantages in lower FLR, latency, area and power.

Thank you

