Concatenated FEC Proposal for 200G/Lane PMD

Lenin Patra (Marvell Semiconductor Inc)

May 18, 2022
IEEE 802.3df May 2022 session

Contributor

- Jamal Riani, Marvell
- Arash Farhood, Marvell
- Kishore Kota, Marvell

Goal of the presentation

In this presentation we review a concatenated FEC scheme that works in conjunction with the standard KP FEC in the host. The proposed concatenated FEC is a simple soft decision FEC scheme that sits in the DSP SerDes inside the optical module.

This scheme will provide a coding boost to the overall concatenated FEC scheme and will relax the overall link budget as a result.

FEC Architecture : End-to-End, Concatenated, Segmented

What is inside the Data center Optical modules today?

- "Re-timers" and "gearboxes" represent the bulk of DSP deployed inside the IM-DD optics today

- Key enabler for Low Latency \& Low Power solution for existing IM-DD optics based on 100G/lambda

Concatenated FEC extends this concept for NextGen - 200G/lambda

- $\mathrm{n}: 1$ "gearbox" generalized to a simple convolutional inter-leaver
- Inner FEC code concatenated with the interleaved bit stream

Key Questions

- Can this concept enable low power \& low latency while meeting the BER requirement?
- Can this scheme work with forward looking PCS/FEC proposal for 200G for various AUI configuration?
- Can this scheme co-exist with Segmented FEC without breaking the Eco system?

Various FEC Proposals : Baseline Assumptions

- KP4 FEC - RS(544,514) : Pre-dominantly used in 100G/lane \rightarrow extended to 800G ETC mode
- RS(576,514) - Slight better flavor of KP4 FEC but with more complexity - proposed for 200G electrical channels
- KP4 + Hamming $(128,120)$ - Concatenated FEC candidate - works in conjunction with Host KP4 FEC

FEC Type	Baud Rate	Pre-FEC BER threshold	Net Coding gain	Comments
RS(544,514)	PAM4: 106.25 G	$2.2 \mathrm{E}-4$	7dB	* Leverages existing KP4 FEC, exists in switches, PHY today
RS(576,514)	PAM4:112.5G	$1.1 \mathrm{E}-3$	8 dB	* Hard decision FEC
RS(544,514)+ Hamming $(128,120)$	PAM4:113.3G	$4.85 \mathrm{E}-3$	9.5 dB	* Enhanced KP4 FEC with Soft decision Concatenated FEC proposal for 200G/lane

Performance of KP4 FEC Vs RS(576,514) Vs KP4 + Hamming $(128,120)$

KP4 + Hamming $(128,120)$ Vs RS(576,514):

Net Coding gain increase : 1.5 dB with very similar overhead

Generic Concatenated FEC Architecture

- Lane Permutation block - it may be present for certain PMD types only

Purpose of Convolutional Interleaver for Concatenated FEC

- The Convolutional Interleaver ensures each hamming code word encodes 12 10bit RS symbols from different Reed-Solomon codewords.
- 8 parity bits are computed over 12 (10b) RS Symbols.
- Burst error tolerance is a function of bit-symbol mapping block.

Parametrized view of Per-lane Convolutional Interleaver

- Convolutional interleaver is defined per PCS lane
- Parameters for the per-lane convolutional interleaver
- W: Number of KP4 RS codewords in each "word"
- P: Number of sublanes of interleaver
- D: Number of "word" delays
- k:Time index
- in[k]: Input "word" at time index k
- out[k]: Output "word" at time index k

W-symbol words at interleaver input are round-robin distributed to P sublanes

W-symbol words from P sub-lanes are round-robin multiplexed to interleaver output
\qquad

Convolutional Interleaver + Hamming $(128,120)$ Latency for 200G per Lane PMD

Client Type	Parameters for Interleaver	FEC	Decoder Input BER	Latency
400GBASE-R (Clause 119)	$\begin{aligned} & W=2 \\ & P=6 \\ & D=6 \end{aligned}$	KP4 + Hamming (128,120)	$4.85 \mathrm{E}-3$	$\sim 140 \mathrm{~ns}$
800G-PCS assuming ETC Type	$\begin{aligned} & W=4 \\ & P=6 \\ & D=6 \end{aligned}$			$\sim 55 n s$
800G -PCS assuming speed up version of CL-119	$\begin{aligned} & W=2 \\ & P=6 \\ & D=6 \end{aligned}$			~70ns

Concatenated FEC scheme : Keeping it Backward compatible \& Forward looking

Summary

- Simple concatenated soft FEC like hamming $(128,120)$ can provide more than enough coding boost to enable 200G PMD over multiple mediums
- Leveraging the existing KP4 FEC for 200G AUI will benefit the industry and will ease the backward compatibility issues.
- Overhead for KP4 + SFEC is similar to stronger Hard coded FEC like RS $(576,514)$: 113.3Gbaud Vs 112.5 Gbaud while the concatenated scheme provide a better overall coding gain.

Thanks !

