COM Simulation and Analysis for 200Gbps/Lane CR

Tobey P.-R. Li, Mau-Lin Wu
MediaTek
IEEE P802.3df Task Force
2022/06/02
Overview

Link Budget Analysis for 200G/L PAM4 CR

Channel Feasibility: Key Challenges

SerDes Feasibility: COM Sensitivity to Key Parameters

Modulation Type for 200G/L CR: PAM4 vs PAM6

Conclusion
Motivation and Methodology

• Explore feasibility of 200G/L PAM4 CR
 – Channel & SerDes requirements?

• Analyze channel requirements – based on COM v3.70 simulation
 – All available 200G CR channels from IEEE, OIF, & OSFP (total 73x)
 – Based on baseline SerDes

• Assess SerDes feasibility – starting from COM sensitivity check with sweeping key SerDes parameters
 – Provide the directions to make good trade-off between performance & power/cost of SerDes
 – Allow the interoperability between channel & SerDes improvements

• Investigate modulation format for 200G/L CR – comparing PAM4 & PAM6 under the assumption of identical transceiver capability
Objectives

• Do
 – Leverage published channel materials to represent potential 200Gbase channel characteristics and evaluate their corresponding performance
 – Analyze 200G/L CR feasibility from the system’s point of view
 – Point out key challenges of channel: roll-off characterizing impairments, reflection, & crosstalk
 – Provide direction of next generation SerDes: COM sensitivity of key parameters
 – Provide the baseline performance for candidate modulation formats

• Don’t
 – Offer the SerDes or channel solutions
 – Draw conclusions on modulation type for 200G/L CR
CR Channel Profile

- Channel variations mainly come from
 - Host PCB length
 - Cable length, impedance, & AWG
 - Verticals (connector & BGA breakout region)
 - Crosstalk
- Total of 73 channels

<table>
<thead>
<tr>
<th>Source</th>
<th>Contributor</th>
<th>LR Channels</th>
</tr>
</thead>
</table>
| 1. OSFP 200GEL | Amphenol | • 0.5/1m 27AWG CA
| | Amphenol | • 1”-7” PCB at each side (92 Ohm, 1.3dB/in @56GHz)
| | Keysight | • BGA breakout: parallel/orthogonal (no skew)/orthogonal
| | | • Crosstalk mainly comes from connector via |
| 2. mellitz_3df_01_220502 | Samtec | • 0.5/1m/1.5 27AWG CA (100Ohm target)
| | | • 2”/5”/7.45” PCB at each side (1.6dB/in @53.125GHz)
| | | • Termination: T-line (ideal)/SMA 1.0mm/SMA 1.85mm/via 28mm
| | | • No crosstalk |
| 3. oif2022.194.00 | Samtec | • 1/1.5m 28AWG CA (92.5 Ohm)
| | | • Cable backplane with connector direct to package: 100/250 mm 34 AWG (92.5 Ohm)
| | | • Direct to package connector (Cp and Zp2 set to zero)
| | | • Crosstalk mainly comes from connector via |

The objective is to explore diverse channels to assess LR technology feasibility
- Channel IL: 16~42 dB
- FOM_ILD: 0.93~4.23 dB
COM Simulation Consideration: 200G Baseline

- **Die model:** keep the similar IL as 100G (parameters need further investigation)
- **PKG model:** 25% trace loss improvement from 100G, follows the values proposed in oif2021.596.01 (parameters need further investigation)
- **RXEQ length/rise time/jitter/RX noise PSD** scaled with 2x baud rate
- **DER/TX swing/TX SNR/Nonlinearity/TXEQ length** kept the same as 100G
- COM version: 3.70
- Test case (TC 1) (short package): \([z_p(TX) z_p(RX)] = [12, 12]\) mm
- TC 2 (long package): \([z_p(TX) z_p(RX)] = [31, 29]\) mm
Link Budget Analysis for 200G/L PAM4 CR

Whole link budget analysis
- To allow the interoperability among channel components & point out the design challenges
 - Currently the group don’t have consensus in package model → bump-to-bump IL target is evaluated instead of ball-to-ball IL target
 - Analyze performance from the system’s point of view

Whether 200G/L PAM4 CR works?
- If keep the same IL target from 100G to 200G: bump-to-bump IL ~ 36.5 dB (28.5dB ball-to-ball + 8 dB PKG in 802.3ck)
- If make SerDes capability aligned from 100G to 200G

![Link Budget Analysis (wo Crosstalk)](image1)

![Link Budget Analysis (wi Crosstalk)](image2)
Channel Feasibility: ILD

- Resonances characterizing impairments in next generation have been discussed in noujeim_3df_01_220224
- **Vertical transition**
 - Connector footprint
 - BGA breakout region
 -> Can cause multiple reflections
 -> Need more banks of floating taps
- **Impedance mismatch**
 - Connector-BGA breakout
 - Channel-package
 -> Reflection issue have been investigated in 802.3ck
 -> Length of DFE/floattab used to compensate reflections is twice of that for 100G/L CR

wo crosstalk
Noise Distribution (wo Crosstalk)

- Basically, performance is limited by noise enhancement with increasing IL
- Reflection-induced residual ISI can further degrade COM

*Channels with FOM ILD wi_PKG <= 2

Bump-to-bump IL > 36.5 dB
Channel Feasibility: Crosstalk

- **Crosstalk Impact**
 - Crosstalk can degrade COM up to ~2dB at IL of interest

\[d\text{COM} = \text{COM (wi Xtalk)} - \text{COM (wo Xtalk)} \]

- **Insertion-loss-to-crosstalk ratio (ICR) of test channels: 10.5 dB ~ 22 dB**

- **Link budget analysis (wo crosstalk)**

- **Crosstalk limit: ICR >= 25 dB?**

A tight margin of COM (<0.5 dB) for crosstalk
Sensitivity to Transceiver Capability: A_v & SNR_TX

* Baseline: A_v scale factor = 1 ($A_v = 0.413$ V)

* Baseline: SNR_TX = 33 dB

- Increased A_v can help to enlarge signal margin
- Concern: Linearity & power consumption

- TX noise is less significant since ISI dominates the noise budget

Figure:
- Sensitivity to A_v (TC1)
- Sensitivity to A_v (TC2)
- A_v Scale Factor = 1.25

Graphs:
- Sensitivity to SNR_TX (TC1)
- Sensitivity to SNR_TX (TC2)
- SNR_TX = 35

Data:
- A_v: 0.413 → 0.51625
 - COM: ~0.65 dB gain
- TX SNR: 33 → 35
 - COM: ~0.18 dB gain
Sensitivity to Transceiver Capability: Jitter

* Baseline: $A_{DD} = 0.02$

* Baseline: $\Sigma_{RJ} = 0.01$
Sensitivity to Transceiver Capability: η_0 & f_r

* Baseline: η_0 scale factor = 0.5 ($\eta_0 = 4.1E-9$)

* Baseline: $f_r = 0.75$

• A proper design of RX filter can achieve a better tradeoff between peaking gain & noise reduction
• Higher loss channels enjoy higher performance gain as reducing f_r
Sensitivity to Transceiver Capability: \(b_{\text{max}}(1) \)

*Baseline: \(b_{\text{max}}(1) = 0.85 \)

- More flexible DFE coefficient range
 - Beneficial for longer channels due to less noise enhancement induced by CTLE
 - Can help near-main cursor reflections (induced by roll-off)
- Concern: error propagation

\[b_{\text{max}}(1): 0.85 \rightarrow 1 \]
COM: \(\sim 0.45 \text{ dB gain} \)
Summary: Sensitivity to Transceiver Capability

- Average COM gain obtained by SerDes enhancement
 - Based on TC2 & target bump-to-bump IL = 36.5 dB

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Changes from Baseline</th>
<th>Improvement</th>
<th>COM Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_v</td>
<td>0.413 → 0.51625</td>
<td>25% increased</td>
<td>0.65 dB</td>
</tr>
<tr>
<td>SNR_TX</td>
<td>33 → 35</td>
<td>25% increased</td>
<td>0.18 dB</td>
</tr>
<tr>
<td>A_{DD}</td>
<td>0.02 → 0.016</td>
<td>20% decreased</td>
<td>0.15 dB</td>
</tr>
<tr>
<td>Sigma_RJ</td>
<td>0.01 → 0.008</td>
<td>20% decreased</td>
<td>0.04 dB</td>
</tr>
<tr>
<td>η_0</td>
<td>4.1E-9 → 3.28E-9</td>
<td>20% decreased</td>
<td>0.30 dB</td>
</tr>
<tr>
<td>f_r</td>
<td>0.75 → 0.5</td>
<td></td>
<td>0.00 dB</td>
</tr>
<tr>
<td>b_{max}</td>
<td>0.85 → 1</td>
<td>17% increased</td>
<td>0.45 dB</td>
</tr>
</tbody>
</table>

- Potential ways to improve the reach of 200G/L CR
 - Increase A_v → Further investigation in linearity & power consumption required
 - Increase b_{max} → Advanced RX technology can help the problem of error propagation?
 - Enhance η_0 → It’s very challenging to further improve RX noise
PAM4 vs PAM6 (wo Crosstalk)

- Assumptions: Identical transceiver capability for both PAM4 & PAM6
 - Identical impairments (absolute values of rise time, jitter, & RX noise)
 - Identical equalizer length

<table>
<thead>
<tr>
<th>SNR penalty (PAM4 → PAM6)</th>
<th>1E-4</th>
<th>1E-5</th>
<th>1E-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAM4</td>
<td>18.23</td>
<td>19.46</td>
<td>20.42</td>
</tr>
<tr>
<td>PAM6</td>
<td>21.81</td>
<td>23.06</td>
<td>24.04</td>
</tr>
<tr>
<td>SNR Penalty (dB)</td>
<td>3.58</td>
<td>3.6</td>
<td>3.62</td>
</tr>
</tbody>
</table>
PAM4 vs PAM6 (wo Crosstalk)

- PAM4 shows the better overall performance under:
 - Bump-to-bump IL @ 53.125 GHz <= 36.5 dB
 - Channel bandwidth is sufficient (FOM_ILD_wi_PKG <= 2)

- PAM6 outperform PAM4 when channel loss increases

- Channels with limit bandwidth enjoy higher performance gain when moving from PAM4 to PAM6

![Graph showing performance comparison between PAM4 and PAM6](image)
PAM4 vs PAM6 (wi Crosstalk)

- Crosstalk has a high-pass frequency response in general
- If signals can no longer maintain sufficient isolation, PAM6 gains a competitive advantage
- Required channel specifications as considering backward compatibility with 100G/L modulation format
 - BW/Reflection-related requirement: ILD <= 2dB?
 - Crosstalk requirement: ICR >= 25 dB?

![Graphs showing PAM4 vs PAM6 performance](image-url)
• Feasibility of 200G/L PAM4 CR requires both channel and SerDes technology enablement
 – Based on potential reach: bump2bump IL ~36.5 dB

• Channel feasibility and the potential directions for channel design were explored
 – FOM_ILD_wi_PKG <= 2dB
 – ICR >= 25 dB

• SerDes feasibility started with the sensitivity check of key parameters, and the potential solutions to achieve 200G/L PAM4 CR were observed
 – Increased TX swing under proper assessment of linearity & power consumption
 – More flexible DFE coefficient range with advanced RX technology

• Baseline performance of PAM4 & PAM6 was compared under the assumption of identical transceiver capability
 – PAM4 can outperform PAM6 under the well-qualified channel conditions
Further discussion

• Whether 36.5 dB bump-to-bump IL target can meet the 200G/L CR objective with 1 m cable reach?

• Potential approaches to extend bump-to-bump IL target
 – Further SerDes enhancement, e.g., increased A_v & b_{max}(1)
 – Advanced RX technology, e.g., MLSD
 – PAM6
Sensitivity to Transceiver Capability

- Minor changes in performance trend and the resulting values when removing channels with FOM_ILD_wi_PKG > 2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Changes from Baseline</th>
<th>Improvement</th>
<th>COM Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_v</td>
<td>0.413 → 0.51625</td>
<td>25% increased</td>
<td>0.66 dB</td>
</tr>
<tr>
<td>SNR_TX</td>
<td>33 → 35</td>
<td>25% increased</td>
<td>0.22 dB</td>
</tr>
<tr>
<td>A_{DD}</td>
<td>0.02 → 0.016</td>
<td>20% decreased</td>
<td>0.17 dB</td>
</tr>
<tr>
<td>Sigma_RJ</td>
<td>0.01 → 0.008</td>
<td>20% decreased</td>
<td>0.04 dB</td>
</tr>
<tr>
<td>η_0</td>
<td>4.1E-9 → 3.28E-9</td>
<td>20% decreased</td>
<td>0.32 dB</td>
</tr>
<tr>
<td>f_r</td>
<td>0.75 → 0.5</td>
<td>17% increased</td>
<td>0.45 dB</td>
</tr>
<tr>
<td>b_{max} (1)</td>
<td>0.85 → 1</td>
<td>17% increased</td>
<td>0.45 dB</td>
</tr>
</tbody>
</table>

Remove channels with ILD > 2
PAM4 vs PAM6 (wo Crosstalk)
PAM4 vs PAM6 (wi Crosstalk)
THANK YOU