Link Training for AUI Based on OB Signaling

Ali Ghiasi
Ghiasi Quantum/Marvell

Kent Lusted
Intel

IEEE 802.3df Task Force
Montreal

July 12, 2022
Overview

- Prior work related to AUI link training/tuning
- Principle of Ethernet in-band link training
- The benefit of tuning 802.3ck AUI
- The challenge of using in-band LT on multi-segmented link
- Management based OB link training “CMIS-LT”
- Principle of CMIS-LT
- CMIS-LT operation and application use cases
- Summary.

This contributions is view of the authors on OB Link Training and one should not assume how OIF will define CMIS-LT.
Background

- **In 802.3ck in-band link training was considered**
 - ran_3ck_01_0918 suggested continuous adaptation should be considered, and beside in-band link training management register approach should also be considered
 - slavick_3ck_02_0918 investigated various transmitter and receiver architecture with some requiring in-band transmit tuning
 - ran_3ck_adhoc_01_052720 adjust transmit output using CMIS and later creating AUI-S and AUI-L
 - gopalakrishnan_3ck_01a_1118 investigated TX heavy FFE vs RX FFE with conclusion that heavy RX FFE is more robust
 - ghiasi_3ck_01_0721 show the penalty associated with sub-optimum module TX FFE with just two settings AUI-S/AUI-L
 - Another key concern raised was that any in-band LT would eliminate non-CMOS CDR option

- **Based on extensive 802.3ck investigation where even at 100G there is a benefit tuning the TX FFE the author started a project in the OIF management track called “CMIS-LT” to optionally train/tune AUI links with out-of-band “OB” signaling**
 - CMIS-LT is protocol agnostic and can train/tune multi-segmented links use the host management.
Ethernet Link Training (LT)

- Link training is in band and only happens during startup period
 - Receiver DSP drives and tunes the far end TX FFE for optimum SNR
 - Two management entities are driving optimization without visibility to actual TX FIR taps!
Difference Between 100G-AUI-S/L vs Fully Optimized TX FFE

- **Penalty from optimum over AUI-S range**
 - Up to 6 mV (34%) in VEO penalty
 - Up to 1.6 dB in VEC penalty

- **Penalty from optimum over AUI-L range**
 - Up to 8.2 (40%) mV in VEO penalty
 - Up to 1.1 dB in VEC penalty

- **Realistic modules/system likely will have more than 1.6 dB VEC penalty considering modules are tested on MCB + synthetic loss vs real host channel.**

See [IEEE 802.3df Task Force](https://www.ieee802.org/3/ck/public/21_07/ghiasi_3ck_01_0721.pdf)
Host SerDes TX FIR is tuned at manufacturing, no LT
- Host management select AUI-S or AUI-L for TxMod setting.
An optical link consists of 2-4 segments where each segment must be trained

- LT on the backplane or CR links operate as point-to-point
- 4 segmented link with 8 LT engine need to work seamlessly as shown in the diagram below just to bring up an optical link
 - LT frames from one link segment can’t be allowed to propagate to another segment as it will confuse the downstream state machine
- A module CDR implementing in-band Ethernet LT would require full Mux/De-mux with AN/PCS logic ruling out serial CDR implementations and non-CMOS implementations
- Ethernet LT may be too complex for some optical modules!
CMIS-LT is protocol agnostic and doesn’t require any dedicated hardware

- Two independent LT engines optimize TxHost-RxMod and TxMod->RxHost links using single management entity in the host that engages the LT engines
- RxMod and RxHost requests are relayed to the partner transmitter through TWI
- Adaptation/LMS algorithms are self-contained in the host SerDes and module DSP SerDes.

Host Management Criteria for link Bring up
- Skip LT, Use presets, evoke LT on host-mod or mod-host, Create new presets & store.
Potential High-Level DSP/SerDes-CMIS Operation

- Module advertises TxFrMod FFE length
- Host informs module of TxFrHost FFE length
- Ability to read normalized TxFrHost and TxFrMod FIR
- Ability for RxMod (RxHost) to set the TxFrHost (TxFrMod)
 - Or host restore prior settings/pre-sets
 - Jump to specific set of taps
 - After LT engagement SerDes receiver sent coefficient updates or jump via TWI and CMIS
 - If needed RxMod or RxHost will perform FFE taps coefficient update from the link partner
 - Select tap and step size followed no change, Increment, or Decrement
- When RxMod (RxHost) have met the set criteria or reached best setting
 - RxMod(RxHost) stop and report back to host
 - Host will engage mission mode operation.
Training RxHost Host SerDes and RxMod Module SerDes
(Leverages General LT Flow of CL 136.8.11)

- RxHost SerDes local adaptation and LT engine are in direct communication with host CMIS controller
 - Based on SI parameters SNR/BER host determines if TxMod-RxHost need training
 - Host invokes RxHost link training
 - RxHost SerDes passes its request to the module
 - Module adjust TxMod FFE
 - Module informs host TxMod FFE updated
 - RxHost SerDes determines to repeat or inform the host link training is complete.

- RxMod module DSP request for adjustment to TxHost are initiated with module Interrupt and then host will poll the module
 - Based on SI parameters SNR/BER host determines if TxHost-RxMod need training
 - Host invokes RxMod link training
 - RxMod DSP passes its request to module CMIS
 - Module CMIS interrupt the host
 - Host reads module DSP requests
 - Host adjust TxHost FFE
 - Host informs module TxHost FFE updated
 - RxMod DSP determines to repeat or inform the host link training is complete.
CMIS-LT Application Use Cases and Operation

- CMIS-LT is optional and if specific module-port combinations operate with sufficient margin/FOM the port gets enabled for immediate mission mode
 - Margin/FOM are customer/application driven

- CMIS-LT can be used at manufacturing to optimize TxHost or TxMod
 - Assist in creation of module default AUI-S and AUI-L
 - New user presets created for TxHost and TxMod and stored on the host

- TxHost and TxMod default port settings can be further optimized at deployment
 - Per module supplier module skew plugged into a specific port
 - A specific module when plugged into a specific port
 - A more optimized user presets created for TxHost and TxMod and stored on the host

- Optimized host transmit FFE (TxHost) settings and module receive optimized TX FFE (TxMod) are both stored on the host
 - Stored FFE setting can be applied after reset/power down

- Host system and module optimized port settings at time t=0 may need further adjustment at 224G due to aging, temperature, or humidity
 - RxMod DSP or RxHost SerDes may signal the host and if supported the host may either perform non mission or mission mode tweak to TxMod or TxHost.
Summary

- In 802.3ck in-band LT was not considered due to complexity of multi-segmented link and forcing the module CDR to CMOS implementation only
 - At 100G the margin are rather tight and data show there is more than measurable benefit to tune the CK AUI transmitters
 - One of the big source of discrepancy in CK AUI is tuning the TP1a/TP4 with HCB/MCB and the behavior of the module when plugged in to the host
 - At 224G TP1a/TP4 correlation to system performance would only be worse

- OB link training/tuning of AUIs through CMIS is optional but very flexible
 - Utilized only if needed and does not require any dedicated hardware
 - Create user presets, enable tuning at startup, or perform some tweak during mission mode

- OB link training pro and cons
 - Pro – Protocol agnostic, does not require dedicated HW, OB link is always up, single management entity has visibility to both TX and RX links partners
 - Cons – Speed of TWI currently limited to 1 MHz and software

- IEEE 802.3df task force should establish liaison with OIF management on CMIS-LT.