Loss estimates for System Applications with Large Scale Switch – AUI Types

Upen Reddy, Kareti – Cisco Systems Inc.

Overview

- Scope
- Objectives
- Systems considerations
- 100Gb/s and 200Gb/s Conditions and Assumptions
- Review of Losses for suitable AUI types
- Summary /Observations

ılıılı cısco

Scope

- Scope is limited to C2M AUI interfaces for all Ethernet rates and signaling rates
- Backplane and Copper cable applications are not covered.

Table from

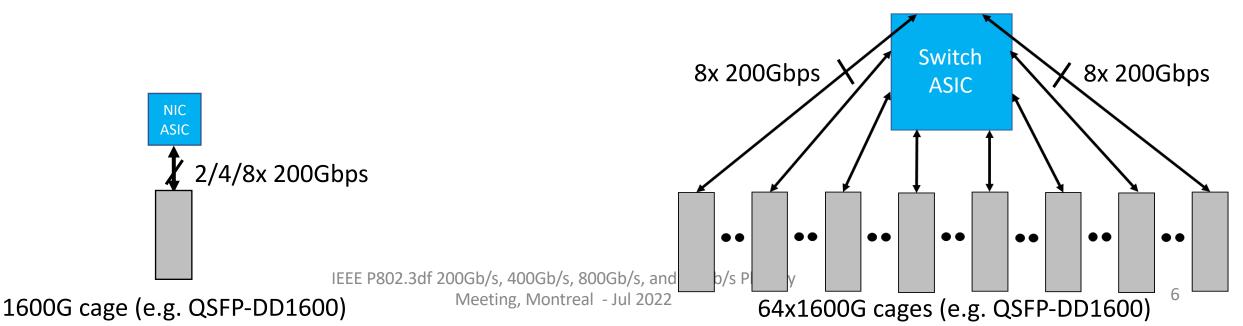
https://www.ieee802.org/3/B400G/public/2 1 1028/B400G overview c 211028.pdf

Adopted Physical Layer Objectives

Ethernet Rate	Assumed Signaling Rate	AUI	ВР	Cu Cable	MMF 50m	MMF 100m	SMF 500m	SMF 2km	SMF 10km	SMF 40km
200 Gb/s	200 Gb/s	Over 1 lane		Over 1 pair			Over 1 Pair	Over 1 Pair		
400 Gb/s	200 Gb/s	Over 2 lanes		Over 2 pairs			Over 2 Pair			
800 Gb/s	100 Gb/s	Over 8 lanes	Over 8 lanes	Over 8 pairs	Over 8 pairs	Over 8 pairs	Over 8 pairs	Over 8 pairs		
	200 Gb/s	Over 4 lanes		Over 4 pairs			Over 4 pairs	1) Over 4 pairs 2) Over 4 λ 's		
	TBD								Over single SMF in each direction	Over single SMF in each direction
1.6 Tb/s	100 Gb/s	Over 16 lanes								
	200 Gb/s	Over 8 Ianes		Over 8 pairs			Over 8 pairs	Over 8 pairs		

Objectives

- A look into Large scale Switch applications in systems and estimate losses for different AUI types that are suitable
 - Signaling rates covering 100Gb/s and 200Gb/s
 - 200Gb/s estimates include for PAM4 modulations
 - All estimates assumed RS-FEC (544,514,10) unless noted otherwise
 - Study impact of stronger RS-FEC (576,514,10) on losses due to increase of overheads



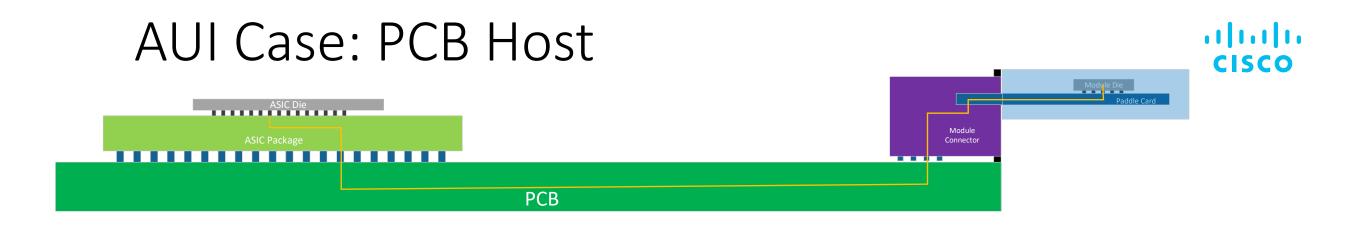
Why The Large Switch Use Case Matters

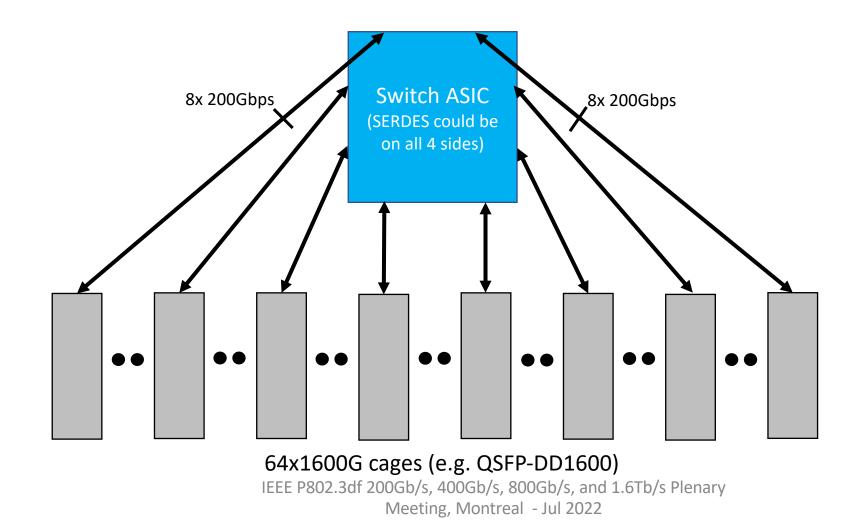
- NIC Use Case: (most previous contributions)
 - Low Radix (e.g. 8x200G)
 - = SERDES on <u>one</u> side of pkg
 - = <u>Small</u> Package
 - = Tight ball size & pitch is OK
 - 1 or 2 optics on one side (PCIe faceplate limited)
 - = very short channel length

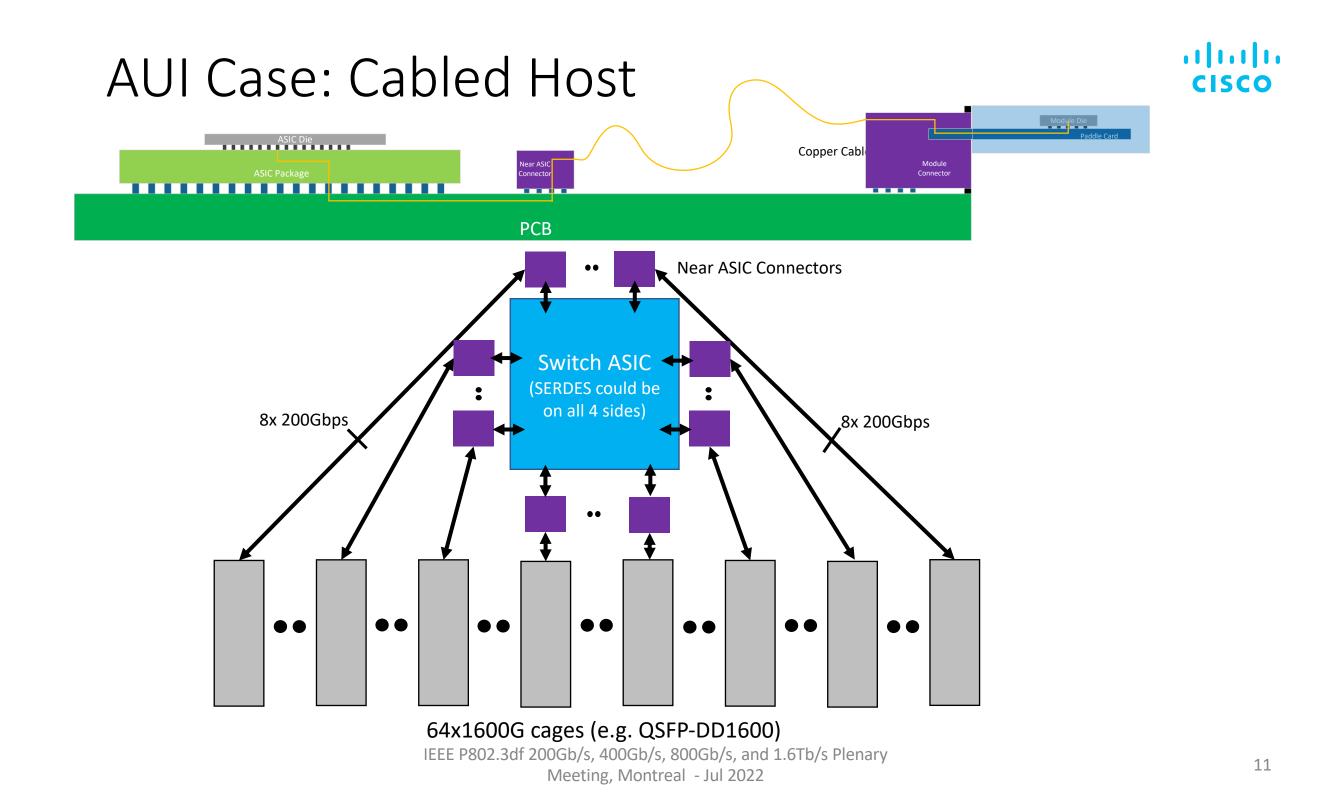
- Large Switch Use Case: (topic of this PPT)
 - High Bandwidth (102.4T), High Radix (e.g. 512x200G)
 - = SERDES on <u>all</u> sides of pkg
 - = <u>Large</u> Package (>16x the area)
 - = Wider ball size & pitch (solderability reasons)
 - 64 optics on <u>one</u> side ("pizza box" font panel)
 - = much longer channel lengths

Continuing the trend for 100G Generation

- 802.3ck project for 100G generation adopted higher host loss for AUI interfaces
 - enabled retimer less switch hosts in 100G generation.
- Critical to
 - consider the switch not just the NIC
 - Support the retimer less switch hosts for 200G generation
 - Support the Switch integration trend 25.6T =>51.2T=>102.4T=>204.8T?

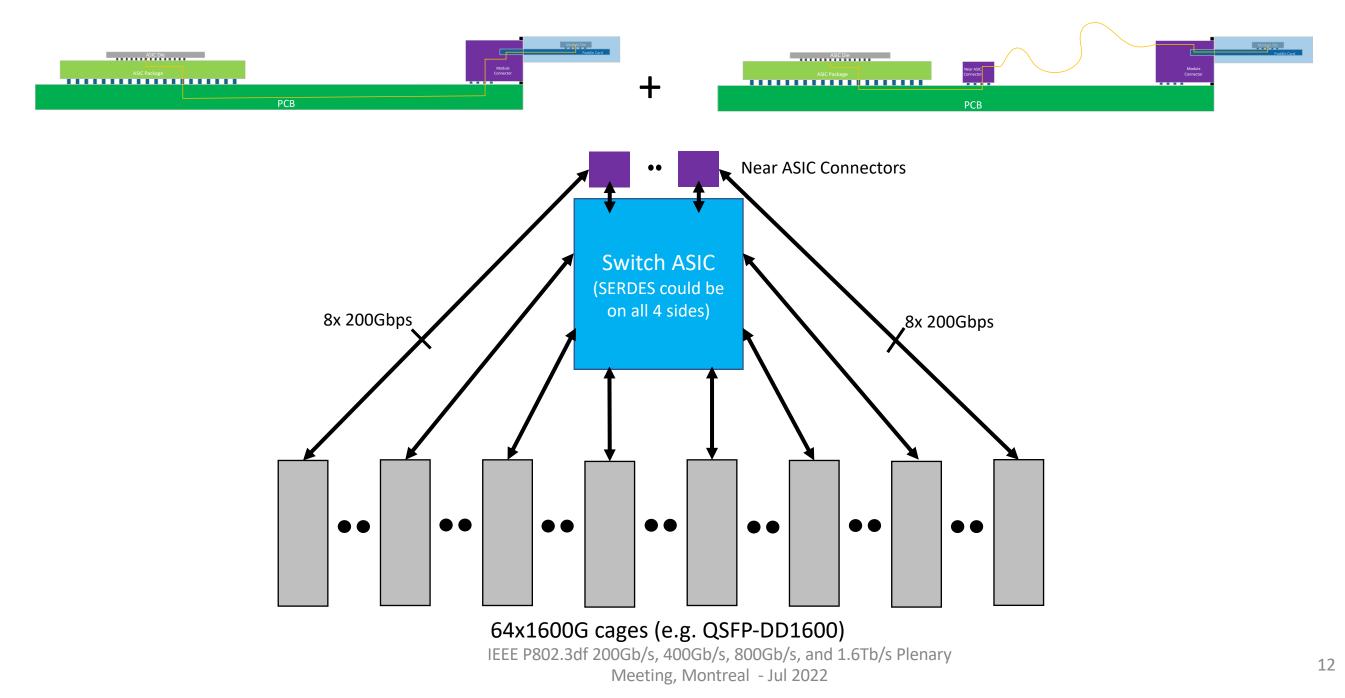



System considerations


- Scaling Switch from 51.2T Switch to 102.4T Switch poses significant challenges
 - Electrical, Mechanical, Thermal and power solutions must be significantly better than 2X of 51.2T systems
 - $\,\circ\,$ End-user Overall Power consumption limitations per rack and per system
 - Facility limitations
 - Green initiatives
 - Doubling the data rate limits the reaches using reasonably low power serdes architecture
 - Thermal aspect of the design is becoming very difficult with respect to system cooling solutions and is also a burden on overall system power consumption
 - \circ Using more Re-timer/re-drivers to solve the reach issues places burden on
 - overall system power consumption
 - power delivery to the components
 - Thermal solutions
 - Pushes system Mechanical envelope larger

100Gb/s and 200Gb/s Conditions and disconsistent disconsis

- 100G evaluations included here compliant to either AUI types considered in C2M standards of P802.3 ck or AUI types that are being considered in OIF like XSR+ for 100Gb/s
- Package and PCB loss improvement options like skipped layers technique are considers for all data rates – 100Gb/s and 200 Gb/s
 - These type of approaches has coverage limitation for large scale switch(s) and system(s)
 - Usage of these approaches are optimized to reduce overall max loss contribution
- 200G/s evaluations assume
 - PCB, cable, package substrate material improvements that are possible in next 2-4 years based on preliminary data
 - Connector losses are estimated based on available preliminary data
 - BGA and Package Core via designs and loss contributions are based on Preliminary simulations



AUI Case: Hybrid (PCB, Cable) Host

ılıılı cısco

Benefits offset by increased bit rate

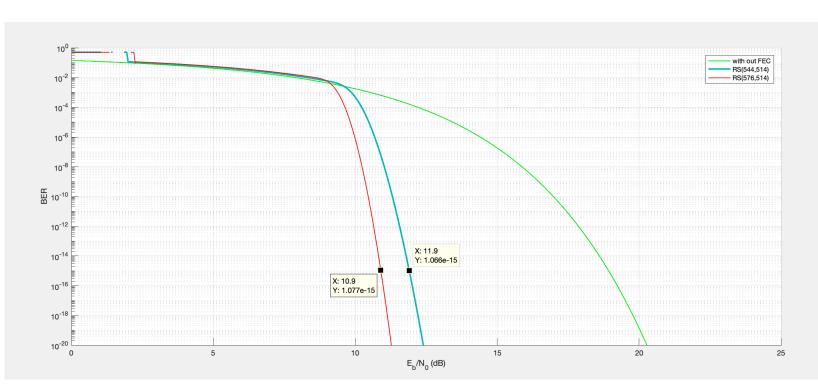
(see next slide)

Loss estimates for All AUI types considered

	End to End Loss (Bump _ Bump) in dB								
AUI Type	100G PAM4	200GPAM4 (RS544 FEC)	200G PAM4 (RS576 FEC)	Loss Increase with RS576 FEC					
Cabled host	20.88	36.26	38.52	2.26					
PCB host	25.70	43.51	45.30	1.79					
Hybrid host	22.63	39.17	40.56	1.39					

Other AUI types evaluated :

- ✓ Near Package Optics (NPO)
- ✓ Near Package Copper (NPC)
- ✓ Co-Packaged Optics (CPO)
- ✓ Co-Packaged Copper(CPC)


General trends were that the xPC had similar C2M channel losses (36-38 dB) and xPO had reduced channel losses

ılıılı cısco

Observations

• FEC RS(544,514) vs RS(576,514) Coding Gain for PAM4

• Link Training

- Stronger FEC may not be helpful- as the coding gain from stronger FEC may be lost due to speed up required in data rate to handle additional overheads - resulting in higher channel losses
- For 36-38 dB loss range Coding Gain from the RS FEC (544,514) may only be sufficient to cover one segment of the channel . Under these conditions Segmented FEC is a better approach to meet overall channel performance
- Enabling the option of Link Training and Precoding for C2M interfaces would be of a great value

Summary and Observations

- The 200Gb/s generation needs to consider both NIC and Switch
- Reviewed Loss estimates for different AUI types that are suitable for all signal rates and Ethernet data rates
 - Part of 802.3 df adopted physical layer Objectives
- Analyzed implementations with anticipated chip packages consistent with large fixed box switch products
 - SerDes need to be able to work with a minimum of 36-38dB for Cabled Host
 - SerDes need to be able to work with a minimum of 43-45dB with PCB Host
- Call to Action : Power is the fundamental limit
 - We need to work to reduce the channels to save SerDes Power
 - System vendors to optimize system design to minimize loss
 - Substrate, PCB, Connector vendors must drive aggressively to improve performance
 - PCB Host created unusable channels without significant improvements
 - We need to consider serdes architecture that can address bump to bump loss at least up to 36-38 dB
 - Ideally improvements in materials can help shrink this, but it is too early to rely on furthermore improvements than already considered for 200G
 - Consider Enabling the option of Link Training (LT) and Precoding for C2M interfaces
 - Stronger FEC may not result in an improvement
 - Segmented FEC scheme should be strongly considered based on the review of the losses.