Towards an 800G-LR4 IMDD specification consensus

July 2022

Roberto Rodes, II-VI
Rang-Chen (Ryan) Yu, SiFotonics
Frank Chang, Source Photonics
Vipul Bhatt, II-VI

Supporters

- Phil Sun, Credo
- Ed Ulrichs, Intel
- Lenin Patra, Marvell
- Sridhard Ramesh, Maxlinear
- Earl Parsons, CommScope
- Zhan Su, Ruijie
- Nengnian Zhu, ZTE
- Han Li, China Mobile
- Jinghui Li, TFC
- Hao Liu, China Telecom
- Fabio Cavaliere, Ericsson
- Christian Urricariet, Intel
- David Li, HiSense
- Antonio Tartaglia, Ericsson
- Xiang Liu, Huawei
- Jianwei Mu, HiSense
- Kohichi Tamura, CIG
- Dechao Zhang, China Mobile
- Scott Schube, Intel
- Drew Guckenberger, Maxlinear
- Kenneth Jackson, Sumitomo
- Chen Zhu, Baidu
- Mark Kimber, Semtech
- Ryan Latchman, Macom
- Vasu Parthasarathy, Broadcom
- Greg D. Le Cheminant, Keysight
- Haifeng Liu, HG Genuine
- Sharon Wang, Semtech
- David Cassan, Alphawave
- Ali Ghiasi, Ghiasi Quantum
- Xue Wang, H3C
- Osa Mok, Innolight
- Jeffery Maki, Juniper Networks
- \quad Shiming Wang, CIG
- Takuto Maruyama, Mitsubishi Electric
- Chan Chih (David) Chen, Applied Optoelectronics
- Tom Palkert, Macom
- Zhigang Gong, O-net
- John Johnson, Broadcom

Outline

- The goal of this presentation is to work towards a consensus on using PAM4 IMDD for 800G-LR4
- Multiple IEEE presentations have shown the importance of managing fourwave mixing (FWM) and chromatic dispersion (CD) on 10 km links
- This presentation updates and compares 2 approaches presented in rodes 3df 01a 220329 and yu 3df 01a 220329 to manage FWM and CD
- There are multiple paths of supporting 800G over 10km links with IMDD
- An IMDD LR4 solution will benefit from the re-use of 500 m and 2 km reach solutions (components, technology, supply chain and testing)

How to manage FWM?

On FWM we need to consider both:

- Magnitude of the FWM generation under worst-case conditions
- Probability of occurrence

Two Proposed Solutions:

- Option A: Unequal spacing -> Zero probability of occurrence (rodes 3df 01a 220329)
- Option B: Low Tx power -> Small magnitude under worst-case conditions (yu 3df 01a 220329)

Both solutions can eliminate FWM concern

Option A: Unequal spacing

- Based on proposal in rodes 3df 01a 220329
- Unequal channel spacing guarantees FWM tones to fall outside the channel passband
- FWM does not depend on Tx power, it can use Tx\&Rx OMA levels similar than other FR4/LR4 specs
- Updated spacing: 400, 800 and 1600 GHz
- Uses channels from CW-WDM MSA
- Reduce maximum positive dispersion. More friendly for EMLs
- Requires $+/-0.45 \mathrm{~nm}$ laser accuracy

CW-WDM MSA Technical Specifications Rev 1.0 Table 2-3

1293.32	231.8
1295.56	231.4
1297.80	231.0
1300.05	230.6
1302.31	230.2
1304.58	229.8
1306.85	229.4
1309.14	229.0
1311.43	228.6
1313.73	228.2
1316.03	227.8
1318.35	227.4

https://cw-wdm.org/?wpdmdl=2092

Option B: Low Tx Power

- Yu et al Proposed reduced Tx OMA power with polarization to mitigate against FWM penalties (yu 3df 01a 220329.pdf)
- Tx OMAouter max: + 1.0 dBm
- Tx OMAouter min:
- -2.0 dBm with $\mathrm{TECQ}<1.4 \mathrm{~dB}$
- $\quad-3.4 \mathrm{dBm}+\mathrm{TECQ}$ with TDECQ $>1.4 \mathrm{~dB}$
- Updated spacing to 800 GHz :

- Channel plan is LWDM with +400 GHz off-set
- Relaxes laser accuracy requirement to +/-1nm
- Allows for lower CD by reducing spacing to 400 GHz
- Rx Sensitivity requirement:
- -9.8 dBm with TECQ $<1.4 \mathrm{~dB}$
- $-11.2 \mathrm{dBm}+\mathrm{TECQ}$ with TECQ/TDECQ>1.4dB

CW-WDM MSA Technical Specifications Rev 1.0 Table 2-3

Option B: Low Tx Power

- Yu et al Discussed APD receiver option to improve sensitivity (yu 3df 01a 220329)
- 106GBaud Ge/Si APD potentially may achieve sensitivity ~ - 12.5dbm @2E-3
- Lin et al discussed SOA+ PIN receiver option to higher sensitivity receivers (lin 3df 01 220609)
- Demonstrated Rx sensitivity:
- OMA $=-11.6 \mathrm{dBm}(R O P=-11.0 \mathrm{dBm}) @ 2 \mathrm{e}-3$
- OMA=-12.1 dBm (ROP=-11.5 dBm) @ 4e-3
- Possible to improve sensitivity further with integrated TIA

Chromatic Dispersion Penalty Simulations

Option A:
Min disp $=-25.3$
Max disp=12.8

Option B:
Min disp $=-25.8$
Max disp=11.3

TDECQ Ref Rx: 21-tap FFE TDECQ
Rx DSP: FFE+ 1-tap PR MLSD
Pre-FEC BER 4.85e-3 (patra 3df 01 2207)

Option A: Unequal spacing

Option B: Low Tx Power

$=\begin{aligned} & 1297.8 \mathrm{~nm} \\ & \mathbf{(1 2 9 6 . 8 - 1 2 9 8 . 8 n m}) \\ & 1320 .\end{aligned}$ $\underset{\substack{1302.3 \mathrm{~nm} \\(1301.3-1303.3 \mathrm{~nm})}}{ }$
1306.9 nm
$\mathbf{1 3 0 . 3 n m}$

$(1305.9-1307.9 \mathrm{~nm})$
$=\begin{aligned} & 1311.4 \mathrm{~nm} \\ & (1310.4-1312.4 \mathrm{~nm})\end{aligned}$

Chromatic dispersion range is within DSP equalization capability

Tx, Rx Specs and Power Budget Comparison

Option A relaxes Rx sensitivity spec by 1.5dB going from 100G/lane to 200G/lane Option B limits Tx OMA max to 1dBm to bound FWM penalty

Comparison of Proposals

	Option A: Unequal Spacing	Option B: Low Tx Power
Channel Plan	$\begin{aligned} & 1297.8 \mathrm{~nm} \\ & 1300.1 \mathrm{~nm} \\ & 1304.6 \mathrm{~nm} \\ & 1313.7 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & 1297.8 \mathrm{~nm} \\ & 1302.3 \mathrm{~nm} \\ & 1306.9 \mathrm{~nm} \\ & 1311.4 \mathrm{~nm} \end{aligned}$
Channel Passband	$+/-0.45 \mathrm{~nm}$	+/-1 nm
Channel Polarization Interleaved	Not required	Interleaved at launch
Dispersion range	-25.3 to $+12.8 \mathrm{ps} / \mathrm{nm}$	-25.8 to $+11.3 \mathrm{ps} / \mathrm{nm}$
Tx OMA min	1.8 dBm	-2 dBm
FWM Penalty	0 dB	1.3 dB
Rx OMA sensitivity (TDECQ<1.4dB)	$-5.3 \mathrm{dBm}$	$-9.8 \mathrm{dBm}$

Conclusion

- $800 \mathrm{G}-\mathrm{LR4}$ can be supported with PAM4 and direct detection with at least two strong options (with other effective FWM suppression options still possible)
- We presented pros and cons for each option and compared them to each other
- Both options use a narrower wavelength plan to limit chromatic dispersion
- Each option uses a different method to manage four-wave mixing:
- Option A uses unequal channel spacing
- Option B uses low Tx optical power and interleaved polarization
- Use of direct-detect for 10 km reach will re-use and leverage a huge base of technologies and components deployed for 500 m and 2 km reach solutions

Thank you

