Proposed Objectives – P802.3dj PAR

IEEE P802.3df Task Force

John D'Ambrosia, Chair, IEEE P802.3df Task Force Futurewei, U.S. Subsidiary of Huawei

Mark Nowell Vice-Chair, IEEE P802.3df Task Force Cisco

14 Sept 2022

IEEE P802.3 df Objectives

Non-Rate Specific

- Support full-duplex operation only
- Preserve the Ethernet frame format utilizing the Ethernet MAC
- Preserve minimum and maximum FrameSize of current IEEE 802.3 standard
- Support a BER of better than or equal to 10 -13 at the MAC/PLS service interface (or the frame loss ratio equivalent)
- Provide support to enable mapping over OTN

200 Gb/s Related

- Support a MAC data rate of 200 Gb/s
- Support optional single-lane 200 Gb/s attachment unit interfaces for chip-to-module and chip-to-chip applications
- Define a physical layer specification that supports 200 Gb/s operation:
 - over 1 pair of copper twin-axial cables in each direction with a reach of up to at least 1.0 meter
 - over 1 pair of SMF with lengths up to at least 500 m
 - over 1 pair of SMF with lengths up to at least 2 km

400 Gb/s Related

- Support a MAC data rate of 400 Gb/s
- Support optional two-lane 400 Gb/s attachment unit interfaces for chip-to-module and chip-to-chip
 applications
- Define a physical layer specification that supports 400 Gb/s operation:
 - over 2 pairs of copper twin-axial cables in each direction with a reach of up to at least 1.0 meter
 - over 2 pairs of SMF with lengths up to at least 500 m
 - over 4 pairs of SMF with lengths up to at least 2 km

IEEE P802.3 df Objectives

800 Gb/s Related

- Support a MAC data rate of 800 Gb/s
- Support optional eight-lane 800 Gb/s attachment unit interfaces for chip-to-module and chip-to-chip
 applications
- Support optional four-lane 800 Gb/s attachment unit interfaces for chip-to-module and chip-to-chip applications
- Define a physical layer specification that supports 800 Gb/s operation:
 - over 4 pairs of copper twin-axial cables in each direction with a reach of up to at least 1.0 meter
 - over eight lanes of twin axial copper cables with a reach up to at least 2 meters
 - over eight lanes over electrical backplanes supporting an insertion loss ≤ 28dB at 26.56GHz
 - over 8 pairs of MMF with lengths up to at least 50 m
 - over 8 pairs of MMF with lengths up to at least 100 m
 - over 8 pairs of SMF with lengths up to at least 500 m
 - over 8 pairs of SMF with lengths up to at least 2 km
 - over 4 pairs of SMF with lengths up to at least 500 m
 - over 4 pairs of SMF with lengths up to at least 2 km
 - over 4 wavelengths over a single SMF in each direction with lengths up to at least 2 km
 - over a single SMF in each direction with lengths up to at least 10 km
 - over a single SMF in each direction with lengths up to at least 40 km

IEEE P802.3 df Objectives

1.6 Tb/s Related

- Support a MAC data rate of 1.6 Tb/s
- Support optional sixteen-lane 1.6 Tb/s attachment unit interfaces for chip-to-module and chip-to-chip
 applications
- Support optional eight-lane 1.6 Tb/s attachment unit interfaces for chip-to-module and chip-to-chip applications
- Define a physical layer specification that supports 1.6 Tb/s operation:
 - over 8 pairs of copper twin-axial cables in each direction with a reach of up to at least 1.0 meter
 - over 8 pairs of SMF with lengths up to at least 500 m
 - over 8 pairs of SMF with lengths up to at least 2 km

CLEAN VERSION

Proposed IEEE P802.3dj Objectives (1 of 2)

Non-Rate Specific

- Support full-duplex operation only
- Preserve the Ethernet frame format utilizing the Ethernet MAC
- Preserve minimum and maximum FrameSize of current IEEE 802.3 standard
- Support a BER of better than or equal to 10 -13 at the MAC/PLS service interface (or the frame loss ratio equivalent)
- Provide support to enable mapping over OTN

200 Gb/s Related

- Support a MAC data rate of 200 Gb/s
- Support optional single-lane 200 Gb/s attachment unit interfaces for chip-to-module and chip-to-chip applications
- Define a physical layer specification that supports 200 Gb/s operation:
 - over 1 pair of copper twin-axial cables in each direction with a reach of up to at least 1.0 meter
 - over 1 pair of SMF with lengths up to at least 500 m
 - over 1 pair of SMF with lengths up to at least 2 km

400 Gb/s Related

- Support a MAC data rate of 400 Gb/s
- Support optional two-lane 400 Gb/s attachment unit interfaces for chip-to-module and chip-to-chip applications
- Define a physical layer specification that supports 400 Gb/s operation:
 - over 2 pairs of copper twin-axial cables in each direction with a reach of up to at least 1.0 meter
 - over 2 pairs of SMF with lengths up to at least 500 m

Proposed IEEE P802.3dj Objectives (2 of 2)

800 Gb/s Related

- Support a MAC data rate of 800 Gb/s
- Support optional four-lane 800 Gb/s attachment unit interfaces for chip-to-module and chip-to-chip applications
- Define a physical layer specification that supports 800 Gb/s operation:
 - over 4 pairs of copper twin-axial cables in each direction with a reach of up to at least 1.0 meter
 - over 4 pairs of SMF with lengths up to at least 500 m
 - over 4 pairs of SMF with lengths up to at least 2 km
 - over 4 wavelengths over a single SMF in each direction with lengths up to at least 2 km
 - over a single SMF in each direction with lengths up to at least 10 km
 - over a single SMF in each direction with lengths up to at least 40 km

1.6 Tb/s Related

- Support a MAC data rate of 1.6 Tb/s
- Support optional sixteen-lane 1.6 Tb/s attachment unit interfaces for chip-to-module and chip-to-chip applications
- Support optional eight-lane 1.6 Tb/s attachment unit interfaces for chip-to-module and chip-to-chip applications
- Define a physical layer specification that supports 1.6 Tb/s operation:
 - over 8 pairs of copper twin-axial cables in each direction with a reach of up to at least 1.0 meter
 - over 8 pairs of SMF with lengths up to at least 500 m
 - over 8 pairs of SMF with lengths up to at least 2 km