Link Training baseline for eight-lane PMDs

Kent Lusted, Intel Corporation

Background

- The PMD Control Function "Link training" in IEEE 802.3-202x CI 136.8.11 is specified for one-lane, two-lane, and four-lane backplane and copper cable interfaces.
- Link training in IEEE Std. 802.3-2022 Cl 136.8.11 specifies only 4 different PRBS13 polynomials for $50 \mathrm{Gbps} / \mathrm{lane}$ and $100 \mathrm{Gbps} / \mathrm{lane}$ rates

Table 136-8—Training patterns						
p	Polynomial $p, G(x)$	Default seed bits	Initial output, PAM2	Initial output, PAM44	Initial output, PAM4 with precoding	
0	$1+x+x^{2}+x^{12}+x^{13}$	0000010101011	0030330330000	$1031320220111^{\mathrm{b}}$	1301200200101	
1	$1+x^{2}+x^{3}+x^{7}+x^{13}$	0011101000001	3030303030333	3030213021333	3122012201212	
2	$1+x^{2}+x^{4}+x^{8}+x^{13}$	1001000101100	0303333033030	1212332133031	1102120121301	
3	$1+x^{2}+x^{5}+x^{9}+x^{13}$	0100010000010	3330300030330	2231210121221	2032013201110	

${ }^{\text {a }}$ The leftmost bit in the sequence corresponds to the initial value of S 0 and the rightmost bit corresponds to the initial value of S12.
${ }^{\mathrm{b}}$ This is equivalent to the PRBS13Q test pattern defined in 120.5.11.2.1.

Problem Statement

- IEEE P802.3df expands the number of lanes to eight.
- The number of PRBS13 polynomials defined (4) is less than the number of supported lanes (8)
- Solutions are needed to de-correlate the training sequences between lanes
- See https://www.ieee802.org/3/bj/public/nov12/lusted 3bj 02 1112.pdf

Proposed Direction

- Part A - For eight-lane copper solutions using $100 \mathrm{Gbps} /$ lane signaling (i.e. 800GBASE-CR8 and 800GBASE-KR8):
- Reuse the existing polynomials across the additional 4 lanes (lanes 4-7 respectively) with new default seed bits
- Maximizes reuse of IEEE P802.3ck era Physical Layer implementations
- Part B - For copper solutions using 200Gbps/lane signaling
- Define four new PRBS13 polynomials and assign them to the 4 new lanes (lanes 4-7 respectively)
- Greater reduction in crosstalk correlation

Part A: 800GBASE-CR8 and 800GBASE-KR8

Details

- It is anticipated that first generation eight-lane 800GbE hosts will heavily leverage IEEE P802.3ck 100G/lane PMD specifications
- Built upon 4-lane PMD building blocks
- Reuse the existing polynomials and select new initial seeds
- Adding new PRBS13 polynomials to these designs may be challenging
- Space the initial seeds approximately half-pattern distance
- PRBS13 has 8192 values; set spacing ~4096 UI apart
- Separation is longer than equalizer length but smaller than skew limit
- Each PMD lane has a unique signature (combination of polynomial choice and initial seed choice)

Training Pattern Details for PMD lanes [4:7]

Create new table in Cl 162

based on Table 136-8 contents for $\mathrm{P}=[0: 3]$

	P	Polynomial_p, G(x)	Default seed bits(a)	Initial output, PAM2(b)	Initial output, PAM4(b)	Initial output, PAM4 with precoding(b)
	0	$1+x+x^{\wedge} 2+x^{\wedge} 12+x^{\wedge} 13$	0000010101011	0030330330000	1031320220111	1301200200101
	1	$1+x^{\wedge} 2+x^{\wedge} 3+x^{\wedge} 7+x^{\wedge} 13$	0011101000001	3030303030333	3030213021333	3122012201212
	2	$1+x^{\wedge} 2+x^{\wedge} 4+x^{\wedge} 8+x^{\wedge} 13$	1001000101100	0303333033030	1212332133031	1102120121301
	3	$1+x^{\wedge} 2+x^{\wedge} 5+x^{\wedge} 9+x^{\wedge} 13$	0100010000010	3330300030330	2231210121221	2032013201110
Lane_4	4	$1+x+x^{\wedge} 2+x^{\wedge} 12+x^{\wedge} 13$	1111110100110	3030000303303	3030001313212	3122223012011
Lane_5	5	$1+x^{\wedge} 2+x^{\wedge} 3+x^{\wedge} 7+x^{\wedge} 13$	1100011101110	0003030003033	0113130013133	0103213103212
Lane_6	6	$1+x^{\wedge} 2+x^{\wedge} 4+x^{\wedge} 8+x^{\wedge} 13$	0000001101000	3300303000300	2300212111300	2131102323000
Lane_7	7	$1+x^{\wedge} 2+x^{\wedge} 5+x^{\wedge} 9+x^{\wedge} 13$	0011000100111	3333000333030	2232000322031	2033131202210
		Reuse polynom		New seed values		

Seed details

- These specific new seeds were selected to ensure that the initial PAM4 precoder state is initialized to 0 at the beginning of each training pattern, so that $\mathrm{P}(\mathrm{j}-1)=0$ in Equation (135-1) for the first PAM4 symbol of the training pattern.
- Lane_4 default seed is offset 4094 of the original seed of slide 2 for $p=0$
- Lane_5 default seed is offset 4098 of the original seed of slide 2 for $p=1$
- Lane_6 default seed is offset 4086 of the original seed of slide 2 for $p=2$
- Lane_7 default seed is offset 4094 of the original seed of slide 2 for $p=3$

More Details

- Consistent with IEEE Std. 802.3-2022 Clause 136.8.11:
- The PRBS generator for each lane shall implement each of four generator polynomials defined
- The polynomial used in each lane i is selectable by identifier_i
- The default identifier for each lane is its lane number
- At the start of the training pattern, the state of the PRBS generator shall be set to the specified seed value.
- The default value of seed_i shall be the value given in a table for $p=i$.

Clause 45 changes

- In Table 45-3 PMA/PMD registers, update the PMD training pattern entry
- 1.1450 through 1.1457 | PMD training pattern, lanes 0 to 7 | 45.2.1.68
- In Cl 45.2.1.168,
- Change the sub-clause title to be
- PMD training pattern lanes 0 through 7 (Register 1.1450 through 1.1457)
- Change the second sentence in the first paragraph to be:
- The assignment of bits in the PMD training pattern lanes 1 through 7 registers are defined similarly to lane 0 .
- Change the last sentence in the second paragraph to be:
- The default identifiers are (binary): for lane 0, 00; for lane 1, 01; for lane2, 10; for lane 3, 11; for lane 4, 00; for lane 5, 01; for lane 6, 10; for lane 7, 11.

Clause 45 changes - 2

- Update second sentence after Table 45-133 to reflect that the same polynomial with the same initial seeds (having the same p identifier) should not be used on adjacent lanes....

Table 45-133-PMD training pattern lane 0 bit definitions

Bit(s)	Name	Description	$R / W^{\text {a }}$
$1.1450 .15: 14$	Seed	Two most significant bits of PRBS13 seed	R / W
1.1450 .13	Reserved	Value always 0	RO
$1.1450 .12: 11$	Polynomial identifier	Identifier $(0,1,2$, or 3) selecting polynomial for PRBS	R / W
$1.1450 .10: 0$	Seed	11 bit, binary seed for sequence	R / W

Part B: 200 Gbps/lane PMDs

Pattern Details

- Hosts using $200 \mathrm{Gbps} /$ lane signaling are not likely to be constrained by 4lane PMD building blocks
- Use a different PRBS13 polynomial per lane
- PRBS13 sequences with different polynomials are practically uncorrelated
- Consistent with IEEE Std. 802.3-2022 Clause 136.8.11:
- The PRBS generator for each lane shall implement each of eight generator polynomials defined
- The polynomial used in each lane \mathbf{i} is selectable by identifier_i
- The default identifier for each lane is its lane number
- At the start of the training pattern, the state of the PRBS generator shall be set to the value seed_i.
- The default value of seed_i shall be the value given in a table for $p=i$.

Proposed Additional Training Patterns

New table in new PMD Clause XXXX

	P	Polynomial_p, G(x)	Default seed bits(a)	Initial output, PAM2(b)	Initial output, PAM4(b)	Initial output, PAM4 with precoding(b)
	0	$1+x+x^{\wedge} 2+x^{\wedge} 12+x^{\wedge} 13$	0000010101011	0030330330000	1031320220111	1301200200101
	1	$1+x^{\wedge} 2+x^{\wedge} 3+x^{\wedge} 7+x^{\wedge} 13$	0011101000001	3030303030333	3030213021333	3122012201212
	2	$1+x^{\wedge} 2+x^{\wedge} 4+x^{\wedge} 8+x^{\wedge} 13$	1001000101100	0303333033030	1212332133031	1102120121301
	3	$1+x^{\wedge} 2+x^{\wedge} 5+x^{\wedge} 9+x^{\wedge} 13$	0100010000010	3330300030330	2231210121221	2032013201110
	4	$1+x^{\wedge} 2+x^{\wedge} 6+x^{\wedge} 10+x^{\wedge} 13$	1111100100111	0303030330330	1312131320321	1233210331201
	5	$1+x^{\wedge} 2+x^{\wedge} 7+x^{\wedge} 11+x^{\wedge} 13$	0001011000001	0030333303330	1021322212331	1332111102123
	6	$1+x^{\wedge} 2+x^{\wedge} 8+x^{\wedge} 12+x^{\wedge} 13$	0010010111010	0003300000330	1113311011230	1012101323300
	7	$1+x^{\wedge} 3+x^{\wedge} 4+x^{\wedge} 8+x^{\wedge} 13$	1110100000001	0003033030300	0012033030301	0011303122132

Note (a): The leftmost bit in the sequence corresponds to the initial value of SO and the rightmost bit corresponds to the initial value of S12.
Note (b): Transmission order is left to right, top to bottom
$P(4)$ goes with lane_4, $P(5)$ goes with lane_5, $P(6)$ goes with lane_6, $P(7)$ with lane_7

Cl 45 Changes

- In Cl 45.2.1.168,
- update Table 45-133 to define register 1.1450 bit 13 (and corresponding registers 1.1451-1.1457) to be the highest bit of the polynomial identifier

Bit(s)	Name	Description	R/W
$1.1450 .15: 14$	Seed	Two most significant bits of PRBS13 seed	R/W
$1.1450 .13: 11$	Polynomial identifier	Identifier $(0,1,2,3,4,5,6$ or 7$)$ selecting polynomial for PRBS	R/W
$1.1450 .10: 0$	Seed	11 bit, binary seed for sequence	R/W

- change the last sentence in the second paragraph to be:
- The default identifiers are (binary): for lane 0,000, for lane 1, 001; for lane2, 010; for lane 3, 011; for lane 4, 100; for lane 5, 101; for lane 6, 110; for lane 7, 111.

Thanks!

Straw Poll

- For 800GBASE-CR8 and 800GBASE-KR8, I would support part A proposed in lusted_3df_01_220914 slides 6-11
- $\mathrm{Y}, \mathrm{N}, \mathrm{A}$

Straw Poll

- For the 200 Gbps/lane copper PMDs, I would support part B proposed in lusted_3df_01_220914 slides 13-15
- $\mathrm{Y}, \mathrm{N}, \mathrm{A}$

Possible Motion

- Move to adopt the link training baseline for 800GBASE-CR8 and 800GBASE-KR8 PMDs in lusted_3df_01_220914 slides 6-11
- M:
- S :
- Technical (>=75\%)
- Results

