Proposal for a specific $(128,120)$ extended inner Hamming Code with lower power and lower latency soft Chase decoding than textbook codes

Will Bliss will.bliss@broadcom.com
Maged F. Barsoum maged.barsoum@broadcom.com German Feyh german.feyh@broadcom.com

Overview of Previously Proposed Inner Concatenated Hamming Codes

- A concatenated coding system for 200G/ lambda optical segments remains the only proposed method to achieve significant net coding gain with reasonably low latency and power
- Outer code remains KP4, leaving the IEEE 802.3 format unmolested
- Interleaving of KP4 codewords has been shown necessary for maximum coding gain
- Note that interleaving of Hamming codewords hasn't been discussed, but a very simple adequate solution is presented
- Inner code $(128,120)$ extended Hamming code has been proposed
- E.g, patra_3df_01_2207, bliss_3df_01c_220517
- Rate $15 / 16 \rightarrow$ Baud rate $=113.333$.. Gbaud/sec (not a multiple of the 156.25 MHz common Ethernet Xtal)
- Proposed by individuals tightly coupled to IC implementation
- Inner code $(144,136)$ Hamming code has been proposed
- E.g., he_3df_01a_220308,
- Rate $17 / 18 \rightarrow$ Baud rate $=112.5 \mathrm{Gbaud} / \mathrm{sec}=720^{*} 156.25 \mathrm{MHz}$ Ethernet common Xtal - Avoids Frac-N PLLs, generally allows lower jitter PLLs
- Generally preferred by the Ethernet community

A Compromise Inner Concatenated Code Proposal

- Reuse the $(128,120)$ rate $15 / 16$ code hardware by shortening that code, WHILE simultaneously
- Achieving the higher rate of $17 / 18$, preserving the Ethernet common compatibility - Which sounds impossible, but it is possible because;
- The Inner Code only needs to protect PAM-4 symbols (Bauds), not binary bits
- Every given noisy Gray-coded PAM-4 received symbol can only have one low reliability bit (either the MSB or the LSB, but never both bits)
- Easy to see for a PAM-4 slicer. IF a low reliability bit, the probability the 'other bit' is actually in error is so rare as to not impact system performance
- Define the data payload of the shortened code as the XOR(MSB,LSB) of each of the $136 / 2=68$ data PAM-4 symbols in a $(144,136)$ format
- IF a soft correction points to one of these data Bauds, only consider flipping the low reliability bit
- The 8 parity bits are transmitted normally as 4 PAM-4 symbols
- The net binary code is thus $(76,68)$, which can be implemented as a shortened version of an extended Hamming $(128,120)$ code.
- The hardware for implementing the shortened code is the ~same algebra as for the full code, and there are only $76 / 128=59.3 \%$ as many locations to consider correcting
3 । IEEE 802.3df Task Force

Compromise Inner Code of Rate $=17 / 18$

Decoding the shortened code points to the PAM-4 symbols to 'correct', which is unambiguous and essentially lossless compared to pointing to 'bits'

Block Diagram of the Proposed System TX / Encoding

- Baud rate is ' 802.3 KP4 rate’ * $144 / 136=106.25 G$ * 18/17 = 112.5 Gbaud/sec
- Proposal is to use a shortened $(128,120)$ extended Hamming code for PAM-4 to effect rate $17 / 18$
- KP4 interleavers have been described previously for rate 15/16. Increase from 12-way to 14-way for the 17/18 rate
- A Hamming interleaver based on Baud (PAM-4) units is needed to achieve high coding gain IF the SNR(f) is low at high frequencies, which creates some error patterns of several Bauds in length
- Because Hamming codewords are very short compared to KP4 words, and because we only need to spread out adjacent PAM-4 symbols (not RS symbols), the cost and latency for even 8 -way Hamming Baud interleaving is low

Soft Hamming Performance vs 'Hamming Interleaver Ways’

w/ Minimal SNR degradation at high freq.

w/ Moderate SNR degradation at high freq.

- A Hamming Codeword interleaver based on Baud (PAM-4) units is needed
- 2-way may be enough for 'good channels' with only moderate SNR(f) degradation at high frequency
- >= 4-way is needed for moderate SNR(f) degradation at high frequency
- Because Hamming codewords are very short compared to KP4 words, and because we only need to spread out adjacent PAM-4 symbols (not RS symbols), the cost and latency for even 8 -way Hamming Baud interleaving is low, and provides protection against 'even worse' SNR(f) at high frequency

Chase type Soft Hamming Decoding Algorithm

- Let $N=\binom{q}{1}+\binom{q}{2}+\ldots+\binom{q}{w}$
- All combinations of the q lowest reliabilities, taken at up to a maximum of w at a time
- IF syndrome==<0 0000000 , THEN done; Else continue
- For $\mathrm{k}=1: \mathrm{N}$ where $\mathrm{N}=$ is the number of 'test patterns'
- Flip the $\mathrm{w}(\mathrm{k})<=\mathrm{w}$ bits in this test pattern
- Run Hard Hamming Correction for this test pattern
- Look Up the Reliabilty for this 'hard correction bit' Code to reduced complexity
- Calculate the net reliability for this case of $w(k)+1$ bit flips, and save
- END
- Output the corrected codeword with the highest Net Reliability
- Strip off the Hamming Parity bits and deliver to data sink

The Design Problem

- Find / Create a systematic $(128,120)$ extended Hamming code with a low cost hard Hamming parallel decoder
- Only matrix G and H descriptions are considered, because high speed Parallel operation is required
- Code choice is not limited to 'polynomial type serial' descriptions
- Certain linear operations are allowed on the parity portion of the generator G matrix
- Except the $k x k=120 x 120$ Identity matrix must remain to be a Systematic code
- Certain linear operations are allowed on the full parity check H matrix
- A given G matrix can have a huge number of functional H matrices
- The canonic form where H contains an Identify matrix isn't required
- A directed search found the following systematic code with a simple map from syndrome to location

Generator Matrix

The proposed 128×120 Systematic encoding G matrix is
$\mathrm{G}=\left[\mathrm{P}^{\top}{ }_{8 \times 120} ; \mathrm{I}_{120 \times 120}\right]$,
Denote the data payload $=u$, and the encoded message $=m$
$m_{128 \times 1}=G_{128 \times 120}{ }^{*} u_{120 \times 1}$
where the 8×120 matrix $P^{T}=$

To complete the total definition of the Hamming encoder, we further propose that the parallel data payload $u_{120 x 1}$ is received 'bottom first' and 'LSB first', and similarly message $m_{128 x 1}$ is output 'bottom first' and 'LSB first'
This completes the definition of the Hamming encoder, which is usually where standards stop, leaving the receiver / decoder to the implementer

Parity Check H Matrix

The canonic form Parity Check H matrix is
$\mathrm{H}_{8 \times 128}=\left[I_{8 \times 8},\left(\mathrm{P}^{\mathrm{T}}\right)_{8 \times 120}\right]$,
Denote the syndrome $=s$, and the noisy message $=n$
$\mathrm{s}_{8 \times 1}=\mathrm{H}_{8 \times 128}{ }^{*} \mathrm{n}_{128 \times 1}$

The proposed Parity Check Matrix for simplified decoding is $\mathrm{H}^{\prime}{ }_{8 \times 128}=$

which gives a 'different' syndrome than the canonic form, but a syndrome which makes it simpler to locate an error
Note that users are free to use their own derivations / favorite versions of H. Our favorite is only presented to motivate standardizing the described G matrix, which defines 'the code'.

Simple Mapping from Syndrome to binary bit location

Denote the syndrome vector $\mathrm{s}_{8 \times 1}$ as <S(1), $\mathrm{S}(2) \ldots \mathrm{S}(7), \mathrm{S}(8)>$
Where $\mathrm{S}(8)$ is the top of the $\mathrm{s}_{8 \times 1}$ vector and is the extended parity
Denote the binary address of the bit to be corrected by the syndrome as number <i(1), i(2) .. i(7)>

```
i(1)=S(1); i(2)=S(2);
i(3)=xor((S(1) & S(2) ), S(3));
i(4)=xor( (~S(1) & ~S(2) & S(3) ), S(4));
i(5)=xor( (S(1) & ~S(2) & S(3)), S(5));
i(6)=xor( (~S(1) & S(2) & S(3)), S(6));
i}(7)=\operatorname{xor( (S(1) & S(2)&~S(3) ),S(7));
```

- Which is implemented using 8 AND and 5 XOR gates
- 11% power reduction to the net soft Chase implementation compared to ROM versions - Implementations of Textbook codes with ROMs require throughputs near 100e9 Reads/sec of 128 word ROMs with 7-bit words
- Depending on choice of Chase algorithm w and q parameters

Shortening the $(128,120)$ code to binary $(76,68)$

- The proposed code, like all systematic codes, is simple to 'shorten'
- Message bits not used can conceptually be filled with zeros
- Received bits not used likewise can be zeroed out
- Which makes clear the components of G and of H that can be deleted
- The 52 right side columns of G and the bottom 52 rows of G are deleted
- Similarly, the 52 right side columns of H are deleted

Shortening the $(128,120)$ code to binary $(76,68)$; G

- The 52 right side columns and 52 bottom rows of G are deleted

Full length code	
$m_{128 \times 1}=$	$\mathrm{G}_{128 \times 120}$
$\mathrm{P}_{8 \times 120}$	
$\mathrm{I}_{120 \times 120}$	

Shortened code

Shortening the $(128,120)$ code to binary $(76,68) ; \mathrm{H}$

- The 52 right side columns of H are deleted

Summary of Proposal

- A compromise Inner Hamming Coding Method is proposed that
- Achieves rate 17/18,
- which most Ethernet users prefer as it can share the common 156.25 MHz Xtal reference
- Allows use of any $(128,120)$ binary extended Hamming code with simple shortening
- Which silicon developers have preferred
- A specific $(128,120)$ extended Hamming code is proposed that
- Includes a detailed description of syndrome generation and mapping to binary addresses
- Which is simpler to 'hard decode' in a soft Chase algorithm than textbook codes

