Constructing a BCH/Hamming Inner Code for 200 Gb/s per lane PMDs

Xiang He, Xinyuan Wang, Hao Ren, Nianqi Tang Huawei Technologies

Background: Previous FEC Related Discussions

- In welch 3df 01b 220602, discussions were focused on feasibility and availability of FEC capability to enable $200 \mathrm{~Gb} / \mathrm{s}$ per lane with IM-DD PAM4.
- $\sim 2-2.4 \mathrm{E}-3$ is the possible pre-FEC BER range based on data in this group.
- wang_3df 01a 220609 and zhang_3df 01220609 proposed $800 \mathrm{~Gb} / \mathrm{s}$ single carrier coherent based on DP-QAM modulation for 800GBASE-LR1.
- Analysis was based on $\sim 4-4.5 \mathrm{E}-3$ pre-FEC BER range.
- For $200 \mathrm{~Gb} / \mathrm{s}$ per lane AUI, ~1E-5 pre-FEC BER is under discussion in the Task Force.
- Concatenated code with $\mathrm{BCH} / \mathrm{Hamming}$ as inner code based on soft decision implementation is interested in the Task Force.

Background: Adopted Logic Layer Baseline

- Concatenated code is one of the FEC schemes adopted in logic architecture baseline in May.

Proposed 802.3df Overall Architecture

- For all Ethernet rates within this project (200G/400G/800G/1.6T)
- FECs might or might not be reused across schemes
- TBD which FEC scheme(s) are needed for this project

Note - Extender sublayer used when encoding and / or FEC changes. Multiple instances possible
Page 11

FEC1 = End to End FEC
FEC2 = AUI FEC for Segmented
FEC3 = PMD FEC for Segmented
FEC3
F PMD FEC for Segmented
F O
FEC5 = Inner FEC for Concatenated

Stack \#3

- Motivation: Introduce general methods on how to construct a suitable inner code to support $200 \mathrm{~Gb} /$ s per lane PMDs of $800 \mathrm{G} / 1.6 \mathrm{TbE}$, and new 200/400GbE.

General Approach for Concatenated Codes

- Basic concepts:
- Outer code: the first encoded FEC code. It appears on the "outer" side of the whole link.
- Inner code: the later encoded FEC code. It appears on the "inner" side of the whole link.

- For 802.3 dj , we assume $\operatorname{RS}(544,514)$ as the outer code.
- To construct an inner code working with RS $(544,514)$ code and can be adapted to the PCS/PMA architecture.
- BCH code with $t=1$ and Hamming code are under discussion as moderate ASIC implementation cost and reasonable FEC performance as shown in he 3df 01a 220308, bliss_3df_01a_220517, patra_3df_01a_2207, ghiasi 3df 02a 2207, etc.

Brief Introduction of BCH Code

- Bose-Chaudhuri-Hocquenghem (BCH) codes are a class of cyclic error-correcting codes that are constructed using polynomials over a finite field (Galois Field).
- As the inner code of the concatenated architecture in this project, we only consider binary BCH codes to work together with the non-binary BCH outer code, such as RS $(544,514)$.
- For any positive integers $\mathrm{m} \geq 2$ and $t<2^{m-1}$, there exists a binary BCH code with the following parameters:
- Codeword length:
- Number of message bits: k
- Number of corrected bits: t
- Galois field index, $\operatorname{GF}\left(2^{m}\right)$: m
- Number of parity bits: $\mathrm{n}-\mathrm{k} \leq m t$
- Minimum hamming distance: $d \geq 2 t+1$
n bits/symbols per codeword

- $\mathrm{BCH}(\mathrm{n}, \mathrm{k})$ code can be extended to $\mathrm{eBCH}(\mathrm{n}+1, \mathrm{k})$ by adding an additional parity bit.
- $\mathrm{BCH}(\mathrm{n}, \mathrm{k})$ code can be shortened to $\mathrm{BCH}(\mathrm{n}-\mathrm{c}, \mathrm{k}-\mathrm{c})$ by removing the c bits of padded 0 s .

Derive Overhead of Inner Code from Bit Rate in Ethernet

- Choosing the inner code (n, k) with the right n / k ratio could enable simpler $200 \mathrm{~Gb} / \mathrm{s}$ per lane based PLL design, similar as 66/64(or 33/32) and 34/32(or 17/16) overhead ratio we chose before.

- $\mathrm{BCH}(144,136), \mathrm{BCH}(126,119)$ will both give a $225 \mathrm{~Gb} / \mathrm{s}$ per lane rate.

Step-by-Step Construction of a BCH Code

- The following steps describe how to construct a narrow-sense binary primitive BCH code.

1. Determine the desired codeword length and error correction capability.

- Finding the suitable $\boldsymbol{n}\left(=2^{m}-1\right.$) and t (or d equivalent, $\boldsymbol{d}=2 t+1$).

2. Find a degree \boldsymbol{m} primitive polynomial $\boldsymbol{p}(\boldsymbol{x})$ to construct the Galois Field $\mathrm{GF}\left(2^{m}\right)$.

- A primitive element α is the root of $p(x)$.
- Every non-zero element in $\operatorname{GF}\left(2^{m}\right)$ can be expressed by $\boldsymbol{\alpha}^{\boldsymbol{j}}$ with integer \boldsymbol{j}.

3. Find the minimal polynomials $\boldsymbol{f}(\boldsymbol{x})$ for each primitive element $\boldsymbol{\alpha}^{i}(i=1,2,3, \ldots, 2 t)$ in $\mathrm{GF}\left(2^{m}\right)$.

- The minimal polynomial $f_{i}(x)=\left(x-c_{1}\right)\left(x-c_{2}\right) \cdots\left(x-c_{l}\right), l \leq m,\left\{c_{l}\right\}$: conjugate root of $f_{i}(x)$ including $\boldsymbol{\alpha}^{i}$.

4. Get the generating polynomial $\boldsymbol{g}(\boldsymbol{x})=\operatorname{LCM}\left[f_{1}(x), f_{2}(x), \ldots, f_{2 t}(x)\right]$

- The generating polynomial is similar as the one we use to define the encode process in previous standard specification, like RS $(544,514)$ code in CL119.2.4.4.
- $g(x)$ can be expressed as: $\sum_{i=0}^{p} g_{i} x^{i}=g_{p} x^{p}+g_{p-1} x^{p-1}+\cdots+g_{1} x+g_{0}$, which can be implemented using linear feedback shift register form and be illustrated as such. The number of parity bits is p. The coefficient g_{i} takes value 0 or 1 .

5. Encode the \boldsymbol{k} message bits with the generating polynomial $g(x)$ to get \boldsymbol{n} bits codeword.

Step-by-Step Construction of a Binary BCH Code (t = 1)

- The following steps describe how to construct a narrow-sense binary primitive BCH code with $\mathrm{t}=1$.

1. Determine the desired codeword length and error correction capability.

- For $t=1$, we can simply use $m=\left\lceil\log _{2}(n+1)\right\rceil$.

2. Find the degree \boldsymbol{m} primitive polynomial to construct the Galois Field $\mathrm{GF}\left(2^{\mathrm{m}}\right)$.

- Primitive polynomials have been well studied in academic research.
- Many polynomials can be found online such as: https://www.partow.net/programming/polynomials/index.html\#deg08

3. The generating polynomial is the same as the primitive polynomial for $t=1$ primitive BCH .

Why and How We Choose $\operatorname{BCH}(144,136)$ (and other codes)

- Various codes with different lengths and t values are tried in a concatenated scheme.
- Codeword length between $100 \sim 1000$ bits were studied ($\mathrm{m}=7: 10$). Some examples were shown in he b400g 01210426 and he 3df 01a 220308.
- Shorter codeword length had better performance when using soft-decision and limited LRPs.
- $t=1$ codes have lower latency and lower complexity.
- Overall shorter BCH codes with $t=1$ works better with the RS $(544,514)$ outer code.
- Shorten the $m=8$ primitive $\mathrm{BCH}(255,247)$, by prefixing to the message bits a sequence of 0 s .
- E.g., we can use primitive polynomial $x^{8}+x^{4}+x^{3}+x^{2}+1$ ("implicit +1 " notation 0x8E) to construct the code.
- There are many other primitive polynomials with degree of 8: 0x95, 0xAF, 0xB1, 0xB2, 0xB4, 0xE1, 0xF3, ...
- The zero prefix sequence is not transmitted and is only used to calculate the parity of the primitive code.
- Apply the overhead ratio $n / k=36 / 34(18 / 17)$, we can have $\mathrm{BCH}(144,136)$.
- eBCH $(76,68)$ used in he 3df 01a 220308 can be constructed in a similar way, with $m=7$ and 1-bit extension, and its overhead ratio $n / k=38 / 34$ (19/17).
- Example polynomial: $x^{7}+x^{3}+1$
- The same code length and overhead can also be a non-extended version of $\mathrm{BCH}(76,68)$ with $\mathrm{m}=8$.

BCH $(144,136)$ Encoder Functional Model

- For $g(x)=x^{8}+x^{4}+x^{3}+x^{2}+1$ of $\operatorname{BCH}(144,136)$, the 9 coefficient are $100011101, \mathrm{MSB}$ on the left.
- The parity calculation shall produce the same result as the shift register implementation below in the similar form as in 119.2.4.4 for RS encoder and 115.2.3.3, 115.2.4.3.2 for BCH encoder.
- The outputs of the delay elements are initialized to zero prior to the computation of the parity for a given message.

Relationship between BCH and Hamming Code

- BCH code is a generalization of the Hamming code for multiple-error correction.
- The single-error-correcting binary BCH code of length 2^{r-1} is a Hamming code.
- Codeword length: $n=2^{r}-1, r \geq 2$;
- Message length: $k=2^{r}-r-1$
- Hamming Distance: $d=3$;
- Hamming code can be constructed with parity-check matrix:

Bit position		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	\cdots
Encoded data bits(Message bit:d1,d2,d3,,,)		p1	p2	d1	p4	d2	d3	d4	p8	d5	d6	d7	d8	d9	d10	d11	p16	d12	d13	d14	d15	
$\begin{array}{\|c} \text { Parity } \\ \text { bit } \\ (\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3,,,) \\ \text { Coverage } \end{array}$	p1	\checkmark																				
	p2		\checkmark	\checkmark																		
	p4				\checkmark	\checkmark	\checkmark	\checkmark					\checkmark	\checkmark	\checkmark	\checkmark					\checkmark	
	p8								\checkmark													
	p16																\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	

Example: $\operatorname{BCH}(144,136)$ and Hamming $(144,136)$

- Construct the BCH code with a polynomial.
- Once the generator polynomial is selected and its LFSR is given, this code is uniquely defined.
- Calling it BCH or Hamming does not matter.
- Functional test and verification can be conducted easily with generator polynomial and LFSR.
- This is the method IEEE $802.3 \mathrm{bj} / \mathrm{bs} / \mathrm{bv}$ used to define the RS and BCH FEC.

Example: Double-Extended Hamming(128,119)

- Definition used in ITU-T G.709.3 Annex D, and IEEE P802.3cw.
- Parity-check column vectors $\boldsymbol{g}(\boldsymbol{i})=\left[\begin{array}{c}s_{0, i} \\ s_{1, i} \\ \vdots \\ s_{6, i} \\ s_{7, i} \\ 1\end{array}\right]$,
where $i=64 s_{6, i}+32 s_{5, i}+\cdots+2 s_{1, i}+s_{0, i}$

$$
s_{7, i}=\left(s_{0, i} \wedge s_{2, i}\right) \vee\left(\overline{s_{0, i}} \wedge \overline{s_{1, i}} \wedge \overline{s_{2, i}}\right) \vee\left(s_{0, i} \wedge s_{1, i} \wedge \overline{s_{2, i}}\right)
$$

- Parity-check matrix

$$
\begin{aligned}
& \boldsymbol{H}=[g(0): g(62), g(64): g(94), g(96): g(110), g(112): g(118), g(120), g(122), g(124), \\
&g(63), g(95), g(111), g(119), g(121), g(123), g(125): g(127)] \\
& \Omega \\
& \boldsymbol{H}=\left[\boldsymbol{P} \mid \boldsymbol{I}_{\mathbf{9}}\right]
\end{aligned}
$$

- Generator matrix

$$
\boldsymbol{G}=\left[\boldsymbol{I}_{\mathbf{1 1 9}} \mid \boldsymbol{P}^{\boldsymbol{T}}\right] \quad \boldsymbol{I}_{n} \text { is an } n \times n \text { Identity matrix. }
$$

Summary

- Suggest to develop BCH inner code for concatenated FEC using the polynomial methodology in this contribution.
- $\mathrm{BCH}(144,136)$ can be a candidate inner code that well matches with $\operatorname{RS}(544,514)$ outer code and Ethernet rate.

Thank you.

 organization for a fully connected, intelligent world.