Consideration on the Concatenated FEC for 800G FR4 and LR4

Kechao Huang, Xiaoling Yang, Qinhui Huang, Huixiao Ma Huawei Technologies

IEEE 802.3df Task Force

Background

- Technical feasibility on 800G FR4 and LR4 were discussed in the Task Force
 - □ E.g., <u>kuschnerov_3df_01_220222</u>, <u>lin_3df_01_220609</u>, <u>liu_3df_01b_2207</u>, <u>rodes_3df_01c_2207</u>
 - Receiver sensitivity can be improved about 1.5 dBm by considering pre-FEC BER target from ~2E-3 to ~5E-3
- End-to-end, segmented, and concatenated FEC architectures were discussed, where the Concatenated FEC architecture got lots of interest
 - Concatenated FEC has significant net coding gain (NCG) but with low latency, low power, and good backward compatibility.
 - □ See <u>he_3df_01a_220308</u>, <u>bliss_3df_01a_220517</u>, <u>patra_3df_01a_2207</u> for more details
 - \square KP4 RS(544,514) code in the host acts as the outer code
 - □ Soft Hamming or BCH code in optical module acts as the inner code
- In this presentation, general consideration on concatenated FEC architecture for 800G FR4 and LR4 will be discussed

Consideration on Concatenated FEC Architecture (1/2)

First Generation Development based on 100G/lane AUI

Second Generation Development based on 200G/lane AUI

- "800GbE PCS/FEC/PMA Baseline Proposal for PHYs using 8x100G PMD lanes" passed motion
 - □ Two 400G FEC flows, and 32 PCS lanes per 800GbE
 - "Does not constrain future PCS/FEC/PMA schemes using 200G/lane AUIs, PMDs and/or Coherent PMDs"
 - □ See <u>shrikhande_3df_01a_221004</u> for more details
- More details on 800GbE PCS/FEC/PMA using 200G/lane AUI will be discussed in the Task Force
- Suggest to consider potential forward compatibility of concatenated FEC solution
 - Try to design the concatenated FEC solution to be easily extended to future 800GE host using 200G/lane AUI

Consideration on Concatenated FEC Architecture (2/2)

- Soft inner code with short code length can be used to achieve low latency
 - □ Hamming(128,120) with rate 15/16 was proposed in <u>bliss_3df_01a_220517</u>, <u>patra_3df_01a_2207</u>, resulting in baudrate 113.33GB
 - $\square Hamming(144,136) with rate 17/18 was proposed in <u>he_3df_01a_220308</u>, resulting in baudrate 112.5GB (720x156.25 MHz)$
- Channel Interleaver can be introduced to decorrelate the noise introduced in the optical medium
- Concatenated Interleaver can be introduced to achieve high NCG of the concatenated solution
 - Assuming AWGN channel, the distribution of errors in the inner decoder input is random, while the output error distribution of the soft decoder is very far from random
 - □ The NCG performance vs. latency was discussed in <u>bliss_3df_01a_220517</u>
 - Convolutional Interleaver instead of Block Interleaver can be used to achieve lower latency, but the synchronization process of the Convolutional De-Interleaver in the receiver side should be taken into consideration, see next page

Toy Example: Convolutional Interleaver and De-Interlevaer

- Take the Convolution Interleaver used in CFEC as example, see IEEE 802.3cw Clause 155.2.4.9, or ITU-T G.709.3 sub-clause 15.4.3 for more details
 - Concatenated Interleaver consists of 16 parallel delay lines; each delay operator "D" represents a storage element of 119 bits; and from one row to the next lower row, two delays operators are deleted;
 - Initialization of the Convolutional Interleave switches to the topmost positions, which occurs at the start of every DSP super frame
 - The switches will wrap around to this topmost position at the start of every ZR frame; that is, ZR frame synchronization guarantees the synchronization of Convolutional De-Interleaver
- Suggest to have joint design of inner code and Convolutional Interleaver to achieve simple synchronization process in receiver side

Potential Concatenated FEC Solution (1/4)

Potential Concatenated FEC Solution (2/4)

KP4

* "Bit MUX" before Convolutional Interleaver was introduced in <u>patra_3df_01a_2207</u> to achieve almost same FEC implementation in optical module for 400G/2x200G PCS with both 100G and 200G AUI.

Potential Concatenated FEC Solution (3/4)

Potential Concatenated FEC Solution (4/4)

Summary

- The consideration on concatenated FEC architecture for 800G FR4 and LR4 is discussed
 - **u** Suggest to design the concatenated FEC solution that can be easily extended to future 800GE host using 200G/lane AUI
 - Suggest to take the receive function of optical module into consideration when designing the inner code and concatenated interleaver
- One concatenated FEC architecture for 800G FR4 and LR4 is proposed
 - First consider the 800GbE host using 100G/lane AUI
 - □ KP4 RS(544,514) code in the host acts as the outer code
 - □ Soft Hamming code in optical module acts as the inner code
 - Concatenated Interleaver includes "Lane MUX" and "Convolutional Interleaver"
- Next steps:
 - **D** To further optimize the solution based on the following discussion about 800G host using 200G/lane AUI
 - **D** To work on Channel Interleaver design, and synchronization analysis

Thank you