Assessment of the combined penalty from FWM and dispersion in 800G-LR4 based on 224Gb/s PAM4

Xiang Liu ${ }^{(1)}$, Frank Chang ${ }^{(2)}$, Rangchen Yu(3), Roberto Rodes ${ }^{(4)}$, Qirui Fan ${ }^{(1)}$, Tao Gui ${ }^{(1)}$, and Kechao Huang ${ }^{(1)}$ ${ }^{(1)}$ Huawei Technologies, China; ${ }^{(2)}$ Source Photonics, USA; ${ }^{(3)}$ SiFotonics, USA; ${ }^{(4)}$ II-VI, USA.

IEEE 802.3dj Meeting on October 12, 2022

Supporters

- John Johnson (Broadcom)
-
-
-

Introduction

T The FWM penalty and the dispersion penalty depend on fiber zerodispersion wavelength (ZDW) differently, so it is necessary to consider the FWM and dispersion penalties collectively for all possible ZDW values.

- This presentation is an extension of the July 2022 presentation liu_3df_01b_2207 with the following new aspects

1) increasing the bit rate per channel from $200 \mathrm{~Gb} / \mathrm{s}$ to $224 \mathrm{~Gb} / \mathrm{s}$ to reflect the increased dispersion effect when the FEC overhead is included;
2) considering the wavelength plan suggested by Roberto and Frank, i.e., the longest four LANWDM wavelengths with 400 GHz red shift;
3) using a more likely FEC BER threshold of $4.5 \mathrm{E}-3$ instead of $8 \mathrm{E}-3$;
4) assessing the FWM+dispersion penalty over all possible ZDW values; and
5) conducting $>1,000$ PMD realizations with $\mathrm{DGD}=0.1 \mathrm{ps} / \mathrm{sqrt}(\mathrm{km})$.

FWM suppression by "XYYX" polarization arrangement

$>$ For typical transmission fibers, the random birefringence model (RBM), where the fiber polarization axes and birefringence strength vary randomly with distance, is commonly used [1,2].
$>$ Under the RBM, the non-degenerate FWM strength on a $4^{\text {th }}$ wavelength depends on the polarization arrangements of the 3 interfering wavelengths as shown in Table 2 and Fig. 3 of Ref.[2]:

Table 2. Properties of nondegenerate FWM driven by three input waves

		$\left\|E_{4}\right\rangle$	P_{4}		
(1)	$\left\|E_{1}\right\rangle \\|\left\|E_{2}\right\rangle \\|\left\|E_{3}\right\rangle$	$\left\|E_{2}\right\rangle$	1		
(2)	$\left\|E_{1}\right\rangle \\|\left\|E_{2}\right\rangle \perp\left\|E_{3}\right\rangle$	$\left\|E_{3}\right\rangle$	$1 / 4$		
(3)	$\left\|E_{1}\right\rangle \\|\left\|E_{3}\right\rangle \perp\left\|E_{2}\right\rangle$	$\left\|E_{2}\right\rangle$	$1 / 4$		
(4)	$\left\|E_{1}\right\rangle \perp\left\|E_{2}\right\rangle \\|\left\|E_{3}\right\rangle$	-	0		
	random	random	$3 / 8$		

Fig. 3. Polarization diagrams for nondegenerate FWM driven by three input waves.
(1)

(2)

(3)

> To effectively mitigate the FWM penalty, we can use the XYYX (or YXXY) polarization arrangement for the four input signals of 800G LR4 [3]:
(*: Note that the degenerate FWM from the center two co-polarized channels generates side tones that are orthogonal to the two edge channels in polarization, so the degenerate FWM-induced penalty is also negligibly small.)

Frequency

Physical picture:
$\Delta \varphi(\mathrm{z}) \sim 2 \varphi_{\mathrm{y}}(\mathrm{z})-\varphi_{\mathrm{x}}(\mathrm{z})$
is fast varying (due to
the very short fiber
beat length of $\sim 10 \mathrm{~m}$).
[1] K. Inoue, "Polarization effect on four-wave mixing efficiency in a single-mode fiber," IEEE J. Quantum Electron. 28, 883-894 (1992).
[2] C. J. McKinstrie, H. Kogelnik, R. M. Jopson, S. Radic and A. V. Kanaev, "Four-wave mixing in fibers with random birefringence," Opt. Express 12, 2033 -2055 (2004).
[3] X. Liu, Q. Fan, T. Gui, K. Huang, and F. Chang, "Effective suppression of inter-channel FWM for 800G-LR4 and 1.6T-LR8 based on 200Gb/s PAM4 channels," IEEE 802.3df contribution liu_3df_01b_2207, July Plenary, 2022. (Available online at: https://www.ieee802.org/3/df/public/22 07/liu 3df 01b 2207.pdf)

The wavelength plan

LAN-WDM channels

Channel index	Center frequency (THz)	Center wavelength (nm)	Dispersion range after 10km $(\mathrm{ps} / \mathrm{nm})$
ch0	231.4	1295.56	$-26.16 \sim-4.08$
ch2	230.6	1300.05	$-22.03 \sim 0.05$
ch4	229.8	1304.58	$-17.87 \sim 4.21$
ch6	229.0	1309.14	$-13.67 \sim 8.41$

LAN-WDM channels with 400 GHz red shift

Channel index	Center frequency (THz)	Center wavelength (nm)	Dispersion range after 10km $(\mathrm{ps} / \mathrm{nm})$
ch1	231.0	1297.80	$-24.10 \sim-2.02$
ch3	230.2	1302.31	$-19.95 \sim 2.13$
ch5	229.4	1306.85	$-15.78 \sim 6.30$
ch7	228.6	1311.43	$-11.56 \sim 10.52$

Concatenated FEC Scheme for 800G IMDD

Impact of FWM in 800G-LR @224Gbps/ λ

PAM4, 112GBd, 9dBm, chirp=0.5, PMD=0.1, ZDF=L5.5

Note: this is a single realization of PMD, not representative of the full distribution of FWM penalties over PMD [4].
[4] J. Johnson, "FWM Analysis of PAM4 LR/ER PMDs," IEEE 802.3df Optics Ad Hoc Meeting, April 11, 2022.

Impact of dispersion in 800G-LR4 @224Gbps/ג

	(THz)	h (nm)
L4	231.0	1297.80
L5	230.2	1302.31
L6	229.4	1306.85
L7	228.6	1311.43

The worst-case dispersion penalty is limited to <2dB.
(Note: this is a single realization of PMD with fiber nonlinearity turned off)

Combined FWM+Dispersion Penalties (PMD=0)

Combined FWM+Dispersion Penalties (A realization with PMD=0.1ps/sqrt(km))

Note: this is a single realization of PMD, not representative of the full distribution of FWM penalties over PMD.

More PMD realizations - with different incident polarization states \& link PMD realizations

Four incident " X " Polarizations

Worst-case CD+FWM penalties with 4,000 PMD realizations

- A worst-case scenario with L4/L5/L6 at +6dBm while L7 at +3 dBm , assuming ZDF exactly at L5.5

\square Even under the worst-case alignment of ZDF and channel center frequencies, the FWM penalty can be limited to $\sim 2 d B$ for a relatively low outage probability of $\sim 1 \%$.
\square Note that when the highest signal launch power is limited to +4 dBm per channel, the FWM penalty can be limited to 1 dB for a relatively low outage probability of $<1 \%$ (even under the worst-case alignment of ZDF and channel center frequencies).

Discussion on FWM-Induced "Overall Outage Probability"

- The FWM-induced "outage" with a 1 dB penalty is $<1 \%$, assuming the worst-case alignment of the ZDF and the four channel center frequencies for a signal launch power of up to 4 dBm .
- The typical SSMF ZDF distribution has $\sim 1 \%$ chance of causing the worst-case penalties
- Modules deployed in the field will be operating with significant margin, due to
- Non-worst-case fiber loss
- Non-worst-case connector/MUX/DMUX losses
- Non-worst-case dispersion due to shorter fiber span than 10 km
- Non-worst-case transmitter power (and non-worst-case power non-uniformity)
- Non-worst-case receiver sensitivity

We may get another "outage" probability reduction factor of $<10 \%$

- Considering all the above, the FWM-induced overall outage probability can be $<1 \mathrm{E}-5$, which is reasonably low, given that the PMD-induced outage probability specified in OIF 400G-ZR is 4.1E-6.

Summary

\square This presentation is an extension of the July 2022 presentation liu_3df_01b_2207 with the following new aspects

1) increasing the bit rate per channel from $200 \mathrm{~Gb} / \mathrm{s}$ to $224 \mathrm{~Gb} / \mathrm{s}$ to reflect the increased dispersion effect when the FEC overhead is included;
2) considering the wavelength plan suggested by Roberto and Frank, i.e., the longest four LAN-WDM wavelengths with 400 GHz red shift;
3) using a more likely FEC BER threshold of $4.5 \mathrm{E}-3$ instead of $8 \mathrm{E}-3$;
4) assessing the FWM+dispersion penalty over all possible ZDW values; and
5) conducting $>1,000$ PMD realizations with $\mathrm{PMD}=0.1 \mathrm{ps} / \mathrm{sqrt}(\mathrm{km})$.

With a suitable selection of the wavelength plan and the FEC threshold, the combined penalty from FWM and dispersion can be $<2.5 \mathrm{~dB}$ when the per-channel signal launch power is limited to 4 dBm for a reasonably low overall outage probability of $<1 \mathrm{E}-5$.

