Assessment of the combined penalty from FWM and dispersion in 800G-LR4 based on 224Gb/s PAM4

Xiang Liu ${ }^{(1)}$, Frank Chang ${ }^{(2)}$, Rangchen Yu(3), Roberto Rodes ${ }^{(4)}$, Qirui Fan ${ }^{(1)}$, Tao Gui ${ }^{(1)}$, and Kechao Huang ${ }^{(1)}$ ${ }^{(1)}$ Huawei Technologies, China; ${ }^{(2)}$ Source Photonics, USA; ${ }^{(3)}$ SiFotonics, USA; ${ }^{(4)}$ II-VI, USA.

IEEE 802.3dj Meeting on October 12, 2022

Supporters

- John Johnson (Broadcom)

More to be added in the future.

Introduction

The FWM penalty and the dispersion penalty depend on fiber zerodispersion wavelength (ZDW) differently, so it is necessary to consider the FWM and dispersion penalties collectively for all possible ZDW values.

T This presentation is an extension of the July 2022 presentation liu_3df_01b_2207 with the following new aspects

1) increasing the bit rate per channel from $200 \mathrm{~Gb} / \mathrm{s}$ to $224 \mathrm{~Gb} / \mathrm{s}$ to reflect the increased dispersion effect when the FEC overhead is included;
2) considering the wavelength plan suggested by Roberto and Frank, i.e., the longest four LANWDM wavelengths with 400 GHz red shift;
3) using a more likely FEC BER threshold of $4.5 \mathrm{E}-3$ instead of $8 \mathrm{E}-3$;
4) assessing the FWM+dispersion penalty over all possible ZDW values; and
5) conducting $>2,000$ PMD realizations with $\mathrm{DGD}=0.1 \mathrm{ps} / \mathrm{sqrt}(\mathrm{km})$.

FWM suppression by "XYYX" polarization arrangement

$>$ For typical transmission fibers, the random birefringence model (RBM), where the fiber polarization axes and birefringence strength vary randomly with distance, is commonly used [1,2].
$>$ Under the RBM, the non-degenerate FWM strength on a $4^{\text {th }}$ wavelength depends on the polarization arrangements of the 3 interfering wavelengths as shown in Table 2 and Fig. 3 of Ref.[2]:

Table 2. Properties of nondegenerate FWM driven by three input waves

		$\left\|E_{4}\right\rangle$	P_{4}		
(1)	$\left\|E_{1}\right\rangle \\|\left\|E_{2}\right\rangle \\|\left\|E_{3}\right\rangle$	$\left\|E_{2}\right\rangle$	1		
(2)	$\left\|E_{1}\right\rangle \\|\left\|E_{2}\right\rangle \perp\left\|E_{3}\right\rangle$	$\left\|E_{3}\right\rangle$	$1 / 4$		
(3)	$\left\|E_{1}\right\rangle \\|\left\|E_{3}\right\rangle \perp\left\|E_{2}\right\rangle$	$\left\|E_{2}\right\rangle$	$1 / 4$		
(4)	$\left\|E_{1}\right\rangle \perp\left\|E_{2}\right\rangle \\|\left\|E_{3}\right\rangle$	-	0		
	random	random	$3 / 8$		

Fig. 3. Polarization diagrams for nondegenerate FWM driven by three input waves.

(2)

(3)

$>$ To effectively mitigate the FWM penalty, we can use the XYYX (or YXXY) polarization arrangement for the four input signals of 800G LR4 [3]:

[^0]

Physical picture:
$\Delta \varphi(z) \sim 2 \varphi_{y}(z)-\varphi_{x}(z)$ is fast varying (due to
the very short fiber
beat length of $\sim 10 \mathrm{~m}$).
[1] K. Inoue, "Polarization effect on four-wave mixing efficiency in a single-mode fiber," IEEE J. Quantum Electron. 28, 883-894 (1992).
[2] C. J. McKinstrie, H. Kogelnik, R. M. Jopson, S. Radic and A. V. Kanaev, "Four-wave mixing in fibers with random birefringence," Opt. Express 12, 2033-2055 (2004).
[3] X. Liu, Q. Fan, T. Gui, K. Huang, and F. Chang, "Effective suppression of inter-channel FWM for 800G-LR4 and 1.6T-LR8 based on 200Gb/s PAM4 channels," IEEE 802.3df contribution liu_3df_01b_2207, July Plenary, 2022. (Available online at: https://www.ieee802.org/3/df/public/22 07/liu 3df 01b 2207.pdf)

Wavelength plan options

LAN-WDM channels

Channel index	Center frequency (THz)	Center wavelength (nm)	Dispersion range after 10km $(\mathrm{ps} / \mathrm{nm})$
ch0	231.4	1295.56	$-26.16 \sim-4.08$
ch2	230.6	1300.05	$-22.03 \sim 0.05$
ch4	229.8	1304.58	$-17.87 \sim 4.21$
ch6	229.0	1309.14	$-13.67 \sim 8.41$

LAN-WDM channels with 400 GHz red shift

Channel index	Center frequency (THz)	Center wavelength (nm)	Dispersion range after 10km $(\mathrm{ps} / \mathrm{nm})$
ch1	231.0	1297.80	$-24.10 \sim-2.02$
ch3	230.2	1302.31	$-19.95 \sim 2.13$
ch5	229.4	1306.85	$-15.78 \sim 6.30$
ch7	228.6	1311.43	$-11.56 \sim 10.52$

Concatenated FEC scheme for 800G IMDD

Impact of FWM in 800G-LR @224Gbps/ λ

PAM4, 112GBd, 9dBm, chirp=0.5, PMD=0.1, ZDF=L5.5

Note: this is a single realization of PMD, not representative of the full distribution of FWM penalties over PMD [4]. [4] J. Johnson, "FWM Analysis of PAM4 LR/ER PMDs," IEEE 802.3df Optics Ad Hoc Meeting, April 11, 2022.

Impact of dispersion in 800G-LR4 @224Gbps/ג

	(THz)	h (nm)
L4	231.0	1297.80
L5	230.2	1302.31
L6	229.4	1306.85
L7	228.6	1311.43

PAM4, 112GBd, 9dBm, chirp=0.5, PMD=0.1, ZDW=1324nm
PAM4, 112GBd, 9dBm, chirp=0.5, PMD=0.1, ZDW=1300nm

The worst-case chromatic dispersion (CD) penalty is limited to $<2 d B$.
(Note: this is a single realization of P8MD with fiber nonlinearity turned off)

Combined CD+FWM penalties (PMD=0)

The worst-case CD+FWM penalty is limited to $<2 \mathrm{~dB}$ at $\mathrm{PMD}=0$.

Combined CD+FWM penalties (A realization with $\mathrm{PMD}=0.1 \mathrm{ps} /(/ \mathrm{grt}(\mathrm{km}))$

The worst-case FWM+dispersion penalty is limited to $<2 \mathrm{~dB}$ at $\mathrm{PMD}=0.1 \mathrm{ps} / \mathrm{sqrt}(\mathrm{km})$. (Note: this is a single realization of PMD, not representative of the full distribution of FWM penalties over PMD.)

More PMD realizations - with different incident polarization states \& link PMD realizations

Four incident " X " Polarizations

Worst-case FWM penalties with >2,000 PMD realizations

- Under a worst-case scenario with $\mathrm{AOP}=5 \mathrm{dBm}$ per channel, assuming that the ZDW is exactly at L5.5, $\mathrm{PMD}=0.1 \mathrm{ps} / \mathrm{sqrt}(\mathrm{km})$, and $\mathrm{BER}_{\mathrm{th}}=4.5 \mathrm{E}-3$.

\square Even under the worst-case alignment of ZDW and laser frequencies, the FWM-induced "outage" is $<10^{-3}$ for a 1 dB penalty and a signal launch power of 5 dBm per channel.

Discussion on FWM-induced "overall outage probability"

- Even assuming that the fiber ZDW distribution is uniform over $1300 \mathrm{~nm} \sim 1324 \mathrm{~nm}$, the chance of "FWM wavelength matching" is 0.563% (according to rodes_3df_01_221012);
- Due to the laser frequency tolerance of df= 100 GHz , the probability of the FWM being within the RX bandwidth is $\sim \mathrm{B} / 2 \mathrm{df}=112 \mathrm{G} / 200 \mathrm{G}=0.56$ (according to johnson_3df_optx_01_220414);
- Based on the results from the last slide, under the alignment of ZDW and laser frequencies, the FWM-induced "outage" is $\sim 10^{-3}$ for a 1 dB penalty and a signal launch power of 5 dBm per channel;
- Thus, the FWM-induced overall outage probability becomes $\sim 0.563 \%^{*} 0.56^{*} 10^{-3}$ or 3.2×10^{-6}, which is reasonably low, given that the PMD-induced outage probability specified in OIF 400ZR is 4.1×10^{-6} (https://www.oiforum.com/wp-content/uploads/OIF-400ZR-01.0 reduced2.pdf).

Summary

\square This presentation is an extension of the July 2022 presentation liu_3df_01b_2207 with the following new aspects

1) increasing the bit rate per channel from $200 \mathrm{~Gb} / \mathrm{s}$ to $224 \mathrm{~Gb} / \mathrm{s}$ to reflect the increased dispersion effect when the FEC overhead is included;
2) considering the wavelength plan suggested by Roberto and Frank, i.e., the longest four LAN-WDM wavelengths with 400 GHz red shift;
3) using a more likely FEC BER threshold of $4.5 \mathrm{E}-3$ instead of $8 \mathrm{E}-3$;
4) assessing the CD+FWM penalty over all possible ZDW values; and
5) conducting $>2,000$ PMD realizations with $\mathrm{PMD}=0.1 \mathrm{ps} / \mathrm{sqrt}(\mathrm{km})$.
\square With a suitable selection of the wavelength plan and the FEC threshold, the combined penalty from FWM and dispersion can be under 2.5 dB when the signal launch power is 5 dBm per channel for a low overall outage probability of $<10^{-5}$.

Thank you!

[^0]: (*: Note that the degenerate FWM from the center two co-polarized channels generates side tones that are orthogonal to the two edge channels in polarization, so the degenerate FWM-induced penalty is also negligibly small.)

