Refined 800G-LR4 IMDD optical specifications

October 12th, 2022

Roberto Rodes, Coherent Maxim Kuschnerov, Huawei Frank Chang, Source Photonics Rangchen (Ryan) Yu, SiFotonics Mark Kimber, Semtech Vipul Bhatt, Coherent

Outline

- Introduction
- Wavelength Plan
- Chromatic Dispersion
- Four-wave mixing
- Combining FWM and dispersion penalties
- Rx Sensitivity
- Power Budget, Tx and Rx specs
- Conclusion

Introduction

- The goal of this presentation is to consolidate in a single proposal a solution for 800G-LR4 with PAM4 and direct-detection
- This is a starting point, and we expect further refinement based on contributions and discussions as the task force progresses

Wavelength Plan

- LAN-WDM wavelengths:
 - 1295.56nm, 1300.05nm, 1304.58nm and 1309.14nm
- 800GHz spacing
- Grid previously used for:
 - 100G-LR4 & ER4
 - 200G-LR4
 - 400G-LR8

Chromatic Dispersion Simulations

- Chromatic dispersion is manageable using LAN-WDM over 10km
- Chirp management minimizes CD penalty
- MLSD provides extra tolerance to dispersion
- Good agreement with experimental data in <u>kuschnerov 3df 02 221012</u>

Four-Wave Mixing

 FWM conversion efficiency is maximum when the zero-dispersion frequency, f0, is centered between two of the input frequencies

LAN-WDM has potential FWM problem if the fiber has zero-dispersion lambdas: 1300.1nm , 1302.4nm and 1304.6nm

MonteCarlo Analysis on FWM Probability

Assuming Fiber ZDW distribution is uniform

In this scenario, 'XYYX' polarization can effectively suppress FWM effect, as shown in simulations in *liu_3df_01a_221012*, and experimentally in *lewis_3df_01_221012*

liu_3df_01a_221012:

"Even under the worst-case alignment of ZDW and laser frequencies, the FWM-induced "outage" is <10⁻³ for a 1dB penalty and a signal launch power of 5dBm per channel."

MonteCarlo Analysis on FWM Probability

MC parameters:

100,000 iterations
Tx AOP = 4.2dBm

Showing only in-band FWM components

In a realistic deployment scenario, the ZDW range is much narrower and FWM effect is negligible. Uniform distribution of ZDW is unrealistic and it overestimates FWM probability

Combining CD + FWM

- With the proposed wavelength plan, FWM tents to increase when the fiber ZDW is closer to 1300nm
- The dispersion impairment for low fiber ZDW is significantly reduced
- FWM and CD do not add on a worst-case basis
- Possible solution:
 - TDECQ inside "FWM Range" <= 2.9dB (dependent on FWM penalty allocation)
 - TDECQ outside "FWM range" <= 3.9dB
 - Keeping TDECQ + FWM always lower than max TDECQ

Rx Sensitivity Analysis

No module data available yet, however:

- Theoretical calculations and Simulations performed using responses based on fabricated devices (EML, driver and TIA) indicate that -5.5 dBm unstress Rx Sensitivity spec is achievable with manufacturing margin
 - No MLSE considered, only FFE equalization
- Experimental Rx sensitivity of -8dBm with stressed Tx has been demonstrated for single lane (<u>kuschnerov 3df 02 221012</u>)

Responsivity (A/W)

Power Budget and Spec Proposal

Additional penalties: DGD= 0.7dB and MPI= 0.4dB (kuschnerov 3df 01a 221012, kuschnerov 3df 02 221012)

Transmitter	
OMA outer, each lane, min TDECQ<1.4dB 1.4dB < TDECQ <= 3.9	1.9 dBm 0.5 + TDECQ dBm
TDECQ max	3.9 dB
TDECQ limited dispersion	2.9 dB
TECQ max	2.9 dB
Receiver	
RS, each lane max TECQ<1.4dB 1.4dB < TECQ <= 3.9 SRS max	-5.5 dBm -6.9 + TECQ dBm -3.0 dBm
Budget	
Power Budget	11.3 dB
Channel Insertion Loss	6.3 dB
Allocation for penalties	5.0 dB

Conclusion

- While we wait for experimental data in the next months, simulation analysis shows 800G-LR4 is technically feasible in LAN-WDM grid
- FWM probability is greatly overestimated when using uniform distribution of fiber zero-dispersion wavelength
- It is possible to allocate penalty to cover the unlikely event of FWM
- Maximum Chromatic dispersion and FWM are mutually exclusive, and both penalties should be combined

Thank you