

#### **Power Considerations for 200G/L AUI**

Tobey P.-R. Li, Mau-Lin Wu MediaTek IEEE P802.3df Task Force 2022/11/15

## Contributors

- Chung-Hsien Tsai, MediaTek
- Che-Yu Chiang, MediaTek

### Outline

- Potential Loss Targets for 200G/L AUI C2M
- **100G/L** SerDes Power Survey
- **200G/L Module Power Discussion**

## Background

- Assessing AUI C2M loss direction is in a rush to progress PCS, FEC architecture, and optical PHYs
- key debates of <u>lusted\_3df\_01\_220927</u> are associated with the channel construction and the state-of-the-art of PCB/package design
- Potential loss targets of 200G/L AUI C2M

|             | Loss Target         | Channel Construction                                                               | FEC                  | Electrical Spec                                                   |  |
|-------------|---------------------|------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------|--|
| Medium loss | ~22 dB              | <ul><li>Advance package or medium radix</li><li>Advance PCB, CPC, or NPC</li></ul> | W/o termination      | DER = 1e-5<br>Weaker SerDes (Similar to 100G/L C2M)               |  |
| High loss   | ~36 dB              | Conventional package or large radiv                                                | Termination of RS544 | DER = 1e-4<br>Stronger SerDes (Similar to 100G/L CR)              |  |
|             |                     | <ul> <li>Conventional PCB</li> </ul>                                               | W/o termination      | DER = 1e-5<br>Even Stronger SerDes<br>(>100G/L CR, possibly MLSE) |  |
| Others      | ~12 dB or<br>~18 dB | Co-packaged with or without 1st level package                                      |                      |                                                                   |  |

#### $\rightarrow$ SerDes power challenge and potential solutions can be observed by balancing TX/RX EQ

# **Evolution of System Power**

- Power objectives for next-generation modules
  - Based on OSFP-XD form factor

| Capacity     | Reach | Expectation |
|--------------|-------|-------------|
| 1.6T or 3.2T | ZR    | Up to 40W   |

\* Ref: <u>The Next Generation of Pluggable Optical Module</u> <u>Solutions</u>, OSFP MSA, Sept. 2022

- For higher-speed, power proportion at electrical-side becomes larger
- For longer reach at optical side, power proportion at line-side becomes larger



\* Source: <u>chopra\_b400g\_01\_210208</u>

## **Power Composition**



# **100G/L SerDes Power Survey**

|                     | ISSCC 2023 [1]               | ISSCC 2022 [2]       | VLSI 2022 [3]             | ISSCC 2021 [4]                                      | ISSCC 2021 [5]           | ISSCC 2022 [6] | ISSCC 2021 [7]  |
|---------------------|------------------------------|----------------------|---------------------------|-----------------------------------------------------|--------------------------|----------------|-----------------|
| Company             | MediaTek                     | Marvell              | Cadence                   | Huawei Ottawa<br>Research and<br>Development Centre | Inphi                    | Marvell        | MediaTek        |
| Process node        | 5nm                          | 5nm                  | 5nm                       | 7nm                                                 | 7nm                      | 5nm            | 7nm             |
| Data rate           | 112.5G                       | 112G                 | 112.5G                    | 112G                                                | 112G                     | 113G           | 112G            |
| Loss [dB]           | 48 (LR)                      | 50 (LR)              | 42 (LR)                   | 45 (LR)                                             | 41.5 (LR)                | 11.5 (XSR)     | 7 (XSR)         |
| TX topology         | 7-bit DAC                    | 7.5-bit DAC          | 7-bit DAC                 | 7-bit DAC                                           | 7-bit DAC                | Analog FFE     | 5-bit DAC       |
| TX FFE taps         | 6                            | 6                    | 5                         | 7                                                   | 4+7                      | 4+2            | 5               |
| RX topology         | 7-bit ADC<br>A: ATT/VGA/CTLE | 7-bit ADC<br>A: CTLE | 7-bit ADC<br>A: VGA1/VGA2 | 7-bit ADC<br>A: ATT/CTLE/VGA                        | 8-bit ADC<br>A: CTLE/VGA | A: CTLE/VGA    | A: CTLE/VGA     |
| RX FFE taps         | 24 + 8 FLT                   | 22 + 8 FLT           | 30                        | 25                                                  | DSP                      | -              | -               |
| DFE taps            | 1                            | 1                    | 1                         | 2                                                   | DSP                      | -              | -               |
| Area/lane [mm^2]    | 0.461                        | 0.49                 | 0.372                     | 0.531                                               | 0.92                     | 0.264          | 0.228           |
| Power/lane [pJ/bit] | 4.63                         | 4.5                  | 5.62                      | 5.91                                                | 6.51                     | 1.55           | 1.71            |
| Total power [mW]    | A: 348.4<br>D: 172.6         | A: 302.4<br>D: 201.6 | A: 395<br>D: 237          | A: 450<br>D: 212                                    | 729.1                    |                | A: 153<br>D: 38 |

# **SerDes Energy Efficiency**

- 200G/L SerDes power?
  - Analog power mainly limits the energy efficiency as process improved
  - Power forecast: 4~5 pJ/b
    - Except for power consumption of FEC termination at module side



|             | Loss<br>Target | FEC<br>Termination | Electrical Spec                                                  | 100G/L<br>Energy Efficiency | 200G/L<br>Energy Efficiency | 200G/L<br>Power Prediction |
|-------------|----------------|--------------------|------------------------------------------------------------------|-----------------------------|-----------------------------|----------------------------|
| Medium Loss | ~22 dB         | Х                  | DER = 1e-5, Weaker SerDes<br>(Similar to 100G/L C2M)             | 4~5pJ/b                     | ~ 3.5 pJ/b                  | 3.5pJ/b*1.6Tb/s = 5.6W     |
| High Loss   | ~36 dB         | V                  | DER = 1e-4, Stronger SerDes<br>(Similar to 100G/L CR)            | 5~6pJ/b                     | ~ 4.5 pJ/b                  | 4.5pJ/b*1.6Tb/s = 7.2W     |
|             |                | Х                  | DER = 1e-5, Even Stronger SerDes<br>(> 100G/L CR, possibly MLSE) |                             | > 4.5 pJ/b                  | > 7.2W                     |

\* This contribution is mainly based on published papers [1-6] and general design rules



• Power challenge in 200G/L optical PMD SerDes to line-side (optical fiber) can help set a C2M AUI loss direction

|             | Loss Target | 200G/L SerDes Power Prediction |
|-------------|-------------|--------------------------------|
| Medium Loss | ~22 dB      | ~5.6W                          |
| High Loss   | ~36 dB      | ~7.2W or higher                |

- Buck converter is under-determined
  - Efficiency of a DC/DC converter:  $\eta$  (%) = Output Power (W) / Input Power (W) x 100
- Power consumption of FEC termination at module side is under-determined
- Power consumption of optical I/O is under-determined
   → 200G/L optical PMD power landscape?

### Reference

[1] H. Park et al., "A 4.63pJ/b 112Gbps DSP-based PAM-4 Transceiver for a Large-Scale Integration in 5nm FinFET", to be appeared in ISSCC, 2023

[2] Z. Guo et al., "A 112.5Gb/s ADC-DSP-Based PAM-4 Long-Reach Transceiver with >50dB Channel Loss in 5nm FinFET", ISSCC, pp. 116-118, Feb. 2022

[3] A. Varzaghani et al., "A 1-to-112Gb/s DSP-Based Wireline Transceiver with a Flexible Clocking Scheme in 5nm FinFET", VLSI, pp. 132-134, June. 2022

[4] M. LaCroix et al., "A 116Gb/s DSP-Based Wireline Transceiver in 7nm CMOS Achieving 6pJ/b at 45dB Loss in PAM-4/Duo-PAM-4 and 52dB in PAM-2", ISSCC, pp. 132-134, Feb. 2021

[5] P. Mishra et al., "A 112Gb/s ADC-DSP-Based PAM-4 Transceiver for Long-Reach Applications with >40dB Channel Loss in 7nm FinFET", ISSCC, pp. 138-140, Feb. 2021

[6] G. Gangasani, et al. "A 1.6 Tb/s Chiplet over XSR-MCM Channels using 113Gb/s PAM-4 Transceiver with Dynamic Receiver-Driven Adaptation of TX-FFE and Programmable Roaming Taps in 5nm CMOS", ISSCC, pp. 122-124, Feb. 2022

[7] R. Yousry et al., "A 1.7pJ/b 112Gb/s XSR Transceiver for Intra-Package Communication in 7nm FinFET Technology", ISSCC, pp. 180-182, Feb. 2021

## **Thank you** Questions and Discussions

