802.3df D1.0 Comment Resolution

P802.3df editorial team

Cross-Clause

CC: PCSL interleaving, FEC performance Comment 6

L 10

C/ 173	SC 173.4.2.1	P 184
Ran, Adee		Cisco
Comment Tvp	e TR	Comment Status D

6

PCSL interleaving (CC)

The restriction for the 32:8 multiplexing is intended to improve the FEC performance with correlated errors. The analysis was done with an AB/CD muxing scheme where one UI has bits from codewords A and B (flow 0) and the following UI has bits from C and D (flow 1). This way, combined with the checkerboard scheme, spreads the errors in a burst across the four codewords with equal probabilities.

The restriction as written does not preclude a different muxing, AC/BD, where one UI has bits from A and C and the following UI has bits from B and D. For example, muxing bits from lanes 0 and 16 as MSB+LSB in one UI and bits from lanes 1 and 17 as MSB+LSB in the next UI.

Since the checkerboard pattern swaps codewords A/B on each pair of lanes in flow 0, and swaps codewords C/D on each pair of lanes in flow 1, this would result in always taking the MSB from either codeword A or B, and the LSB from either codeword C or D. Since the BER for the LSB is twice that of the MSB, this would make flow 1 have an increased BER: it would get 2/3 of the errors (33% higher BER than with the AB/CD muxing).

If this muxing is performed, the result would be an increased FLR (by 1-2 orders of magnitude) compared to 400GBASE-R, just due to sub-optimal muxing - regardless of whether errors are correlated or not!

This degradation can be prevented by adding a restriction that two bits from each flow create one PAM4 symbol.

SuggestedRemedy

Change the second item of the first list in 173.4.2.1 from

"The multiplexing function has an additional constraint that each of the 8 output lanes contain two unique PCSLs from PMA client lanes i = 0 to 15 and two unique PCSLs from PMA client lanes i = 16 to 31"

to

"The multiplexing function has an additional constraint that each of the 8 output lanes contain two unique PCSLs from PMA client lanes i = 0 to 15 encoded as one PAM4 symbol, and two unique PCSLs from PMA client lanes i = 16 to 31 encoded as the subsequent PAM4 symbol (see 173.4.7)."

Make a similar change in the second item of the second list in 173.4.2.2 (which has "service interface lanes" instead of "PMA client lanes").

Also, change the second item of the list in 173.4.2.3 from

"The 4 PCSLs received on any input lane shall be mapped together to an output lane. The order of PCSLs from an input lane does not have to be maintained on the output lane." to

"The 4 PCSLs received on any input lane shall be mapped together to an output lane, maintaining the bit pairs encoded on each PAM4 symbol. Other than that, the order of PCSLs from an input lane does not have to be maintained on the output lane."

Proposed Response Response Status W

PROPOSED REJECT.

The current text and constrainted PCSL multiplexing requirement is consistent with the adopted baseline (see slides 17&18 in

https://www.ieee802.org/3/df/public/22_10/22_1004/shrikhande_3df_01a_221004.pdf) . Also, see response to comment #167.

There is a related presentation:

https://www.ieee802.org/3/df/public/22_12/ran_3df_01_2212.pdf

CC: PCSL interleaving, known lanes Comment 167

 C/ 173
 SC 173.4.2.2
 P 184
 L 37
 # 167

 Dawe, Piers
 Nvidia

 Comment Type
 TR
 Comment Status
 D
 PCSL interleaving (CC)

 This is a PMA. On the receive side, it doesn't know and can't control the PCSLs of the signals it carries.

SuggestedRemedy

Replace this with a practical criterion to ensure that the reduced transition density doesn't happen, if any is needed, e.g. that each of the 8 outputs is derived from four contiguous lanes in the set of 32 incoming PMA lanes. There is negligible benefit in the 4-FEC multiplexing on the receive side because there are only PMAs that can make more errors after this, and their maximum error ratios are far lower than the PMD's.

Proposed Response

Response Status W

PROPOSED REJECT.

The issue described in the comment is not correct.

Subclause 173.4.2.2 is specifically referring to the 8:32 PMA, which is always co-located with a PHY 800GXS below it (see 173.1.4). In the receive direction , this PMA receives 32 parallel bit streams from the PHY 800GXS. Each one of the 32 bit streams is a specific and known PCSL. The PMA is therefore able to identify the specific PCSLs it is receiving from the PHY 800GXS (from the "PHY_XS:IS_UNITDATA_0:31.indication" service interface primitive) and arrange them appropriately.

This receive direction of the 8:32 PMA is funtionally identical to the transmit direction of the 32:8 PMA, where the 32:8 PMA receives 32 parallel bit streams from the 800GBASE-R PCS above it.

The constrained PCSL multiplexing can thus be performed in accordance with slides 17 and 18 in the adopted PCS/PMA baseline

(https://www.ieee802.org/3/df/public/22_10/22_1004/shrikhande_3df_01a_221004.pdf).

The clock content mentioned in the suggested remedy are addressed in comments #166, 169, 126, and 127.

173.4.2.2 8:32 PMA bit-level multiplexing

In the transmit direction, the function is performed among the PCSLs received from the PMA client via the PMA:IS_UNITDATA_*i*.request primitives (for PMA client lanes i = 0 to 7) with the result sent to the service interface below the PMA using the *inst*:IS_UNITDATA_*i*.request primitives (for service interface lanes i = 0 to 31), referencing the functional block diagram shown in Figure 173–4. The bit-level multiplexing function is identical to that specified in 120.5.2, with the following exception:

The number of PCSLs is 32.

In the receive direction, the function is performed among the PCSLs received from the service interface below the PMA using the *inst*:IS_UNITDATA_*i*.request primitives (for service interface lanes i = 0 to 31) with the result sent to the PMA client via the PMA:IS_UNITDATA_*i*.request primitives (for PMA client lanes i = 0 to 7), referencing the functional block diagram shown in Figure 173–4. The bit-level multiplexing function is identical to that specified in 120.5.2, with the following exceptions:

- The number of PCSLs is 32.

— The multiplexing function has an additional constraint that each of the 8 output lanes contain two unique PCSLs from service interface lanes *i* = 0 to 15 and two unique PCSLs from service interface lanes *i* = 16 to 31.

December 6, 2022

CC: PCSL interleaving, clock content (part 1) Comments 166, 169, 126, 127

1 10

C/ 173 SC 173.4.2.1 P 184

Dawe, Piers

Comment Type TR Comment Status D

PCSL interleaving (CC)

166

This additional constraint provides a very modest benefit that is judged not necessary in 400G Ethernet. However, the rare but much more harmful "clock content" (transition density) issue that was discovered late in P802.3bs should now be outlawed. There are many easy ways to do this.

Nvidia

SuggestedRemedy

Make this a recommendation "It is recommended that each of the 8 output lanes contain two unique PCSLs from PMA client lanes i = 0 to 15 and two unique PCSLs from PMA client lanes i = 16 to 31".

Add constraint: "The arrangement of lanes and their skew shall ensure that the reduced transition density described at the end of 120.5.2 does not occur."

Proposed Response Response Status W

PROPOSED REJECT.

The constrained PCS multiplexing specified in Clause 173 is consistent with slides 17 and 18 in the adopted PCS/PMA baseline

(https://www.ieee802.org/3/df/public/22_10/22_1004/shrikhande_3df_01a_221004.pdf).

There is no evidence that clock content is worse than for four-lane 400GBASE-R PMDs lanes. We are not aware of any harmful issues with four-lane 400GBASE-R PMDs due to clock content.

Although some analysis has shown the possibility of reduced clock content, no evidence has been provided to justify further constraints.

173.4.2.1 32:8 PMA bit-level multiplexing

In the transmit direction, the function is performed among the PCSLs received from the PMA client via the PMA:IS_UNITDATA_*i*.request primitives (for PMA client lanes i = 0 to 31) with the result sent to the service interface below the PMA using the *inst*:IS_UNITDATA_*i*.request primitives (for service interface lanes i = 0 to 7), referencing the functional block diagram shown in Figure 173–3. The bit-level multiplexing function is identical to that specified in 120.5.2, with the following exceptions:

- The number of PCSLs is 32.
- The multiplexing function has an additional constraint that each of the 8 output lanes contain two unique PCSLs from PMA client lanes *i* = 0 to 15 and two unique PCSLs from PMA client lanes *i* = 16 to 31

CC: PCSL interleaving, clock content (part 2) Comments 166, 169, 126, 127

CI 173	SC 173.4.2.3	P 1	85	L3	# 169
Dawe, Pie	rs	Nvidi	a		
Comment "The o		Comment Status m an input lane doe	-53	ve to be mainta	PCSL interleaving (CC) ained on the output lane"
	enough to exclud				ot, it can be tightened to red about any old how.
	Response OSED REJECT.	Response Status	w		

Resolve using the response to comment #166.

173.4.2.3 8:8 PMA bit-level multiplexing

In the transmit direction, the function is performed among the PCSLs received from the PMA client via the PMA:IS_UNITDATA_*i*.request primitives (for PMA client lanes i = 0 to 7) with the result sent to the service interface below the PMA using the *inst*:IS_UNITDATA_*i*.request primitives (for service interface lanes i = 0 to 7), referencing the functional block diagram shown in Figure 173–5.

In the receive direction, the function is performed among the PCSLs received from the service interface below the PMA using the *inst*:IS_UNITDATA_*i*.request primitives (for service interface lanes i = 0 to 7) with the result sent to the PMA client via the PMA:IS_UNITDATA_*i*.request primitives (for PMA client lanes i = 0 to 7), referencing the functional block diagram shown in Figure 173–5.

In both the transmit and receive directions, the bit-level multiplexing function is identical to that specified in 120.5.2, with the following exceptions:

- The number of PCSLs is 32.
- The 4 PCSLs received on any input lane shall be mapped together to an output lane. The order of
 PCSLs from an input lane does not have to be maintained on the output lane.

CC: PCSL interleaving, clock content (part 3) Comments 166, 169, 126, 127

C/ 124	SC 124.2	P 62	L 40	# 126
Dawe, Pie	ers	Nvidia		
Comment	Type TR	Comment Status D		PCSL interleaving (CC)

The unlikely case of defective transition density is far more significant than the very modest difference between 2-way and 4-way RS-FEC interleaving. If we are going to break precedent and abandon unrestricted bit-multiplexing, transition density is the first thing to get right, always. With 100G AUI lanes, the Tx silicon can ensure the problem doesn't happen, and we are not mandating 50G/lane AUIs for 800G. We have had some years after this problem was discovered before 800G designs, so it should not be happening now. Let's say so.

SuggestedRemedy

Change "See NOTE at the end of 120.5.2 concerning the transition density of lanes operating at this nominal signaling rate." to "For 400GBASE-DR4 and 400GBASE-DR4-2, see NOTE at the end of 120.5.2 concerning the transition density of lanes operating at this nominal signaling rate. For 800GBASE-DR8 and 800GBASE-DR8-2, see 173.4.2." Similarly in 124.7.2.

In 173.4.2, say that unlike in 120, it is the transmit side PCS and PMA's responsibility to avoid the defective transition density, and give some recommendations. See other comments.

Proposed Response Response Status W

PROPOSED REJECT.

Resolve using the response to comment #166.

124.2 Physical Medium Dependent (PMD) service interface

Change the first six paragraphs 124.2 as follows:

This subclause specifies the services provided by the 400GBASE-DR4. 400GBASE-DR4-2. 800GBASE-DR8. and 800GBASE-DR8-2 PMDs. The service interface for this these PMDs is are described in an abstract manner and does not imply any particular implementation. The PMD service interface supports the exchange of encoded data between the PMA entity that resides just above the PMD, and the PMD entity. The PMD translates the encoded data to and from signals suitable for the specified medium.

The PMD service interface is an instance of the inter-sublayer service interface defined in 116.3 for the 400GBASE-DR4 and 400GBASE-DR4-2 PMDs and in 169.3 for the 800GBASE-DR8 and 800GBASE-DR8-2 PMDs. The PMD service interface primitives are summarized as follows:

PMD:IS_UNITDATA_i.request PMD:IS_UNITDATA_i.indication PMD:IS_SIGNAL.indication

The <u>400GBASE-DR4 and 400GBASE-DR4-2</u> PMDs have four parallel symbol streams, hence i = 0 to 3. The 800GBASE-DR8 and 800GBASE-DR8-2 PMDs have eight parallel symbol streams, hence i = 0 to 7.

In the transmit direction, the PMA continuously sends four \underline{n} parallel symbol streams to the PMD, one per lane, each at a nominal signaling rate of 53.125 GBd. The PMD then converts these streams of data units into the appropriate signals on the MDI.

In the receive direction, the PMD continuously sends-four_n parallel symbol streams to the PMA corresponding to the signals received from the MDI, one per lane, each at a nominal signaling rate of 53.125 GBd. See NOTE at the end of 120.5.2 concerning the transition density of lanes operating at this nominal signaling rate.

CC: PCSL interleaving, clock content (part 4) Comments 166, 169, 126, 127

Cl 124 SC 124.7.2 P 70 L 36 # 127 Dawe, Piers Nvidia Comment Type TR Comment Status D PCSL interleaving (CC)

The unlikely case of defective transition density is far more significant than the very modest difference between 2-way and 4-way RS-FEC interleaving and we have the opportunity now to exclude it for 800G PMDs (see another comment).

SuggestedRemedy

As elsewhere: change "See NOTE at the end of 120.5.2 concerning the transition density of lanes operating at this nominal signaling rate." to "For 400GBASE-DR4 and 400GBASE-DR4-2, see NOTE at the end of 120.5.2 concerning the transition density of lanes operating at this nominal signaling rate. For 800GBASE-DR8 and 800GBASE-DR8-2, see 173.4.2."

In 173.4.2, say that unlike in 120, it is the transmit side PCS and PMA's responsibility to avoid the defective transition density, and give some recommendations.

Proposed Response Response Status W

PROPOSED REJECT.

Resolve using the response to comment #166.

Change the title of 124.7.2 as follows:

124.7.2 400GBASE DR4 receive Receive optical specifications

Change the text in 124.7.2 as follows:

The 400GBASE DR4-<u>A</u> receiver shall meet the specifications defined in Table 124–7 per the definitions in 124.8. See NOTE at the end of 120.5.2 concerning the transition density of lanes operating at this nominal signaling rate.

120.5.2 Bit-level multiplexing

The PMA provides bit-level multiplexing in both the Tx and Rx directions. In the Tx direction, the function is performed among the bits received from the PMA client via the PMA:IS_UNITDATA_*i*.request primitives (for PMA client lanes i = 0 to p - 1) with the result sent to the service interface below the PMA using the *inst*:IS_UNITDATA_*i*.request primitives (for service interface lanes i = 0 to q - 1), referencing the functional block diagram shown in Figure 120–5. The bit multiplexing behavior is illustrated in Figure 120–4.

The aggregate signal carried by the group of input lanes or the group of output lanes is arranged as a set of PCSLs. The number of PCSLs z is 8 for 200GBASE-R interfaces and 16 for 400GBASE-R interfaces. The nominal bit rate R of each PCSL is 26.5625 Gb/s.

For a PMA with m input lanes (Tx or Rx direction), each input lane carries, bit multiplexed, z/m PCSLs. Each input lane has a nominal bit rate of $26.5625 \times z/m$ Gb/s. Note that the signaling (Baud) rate is equal to the bit rate when the number of physical lanes is 8 for 200GBASE-R or 16 for 400GBASE-R (bits are sent or received on the lanes). The Baud rate is equal to half of the bit rate when the number of physical lanes is 4 for 200GBASE-R (PAM4 symbols are sent or received on the lanes). If necessary, PAM4 symbols are converted to pairs of bits on the input lane bald or pairs of bits are converted to PAM4 symbols on the output lanes. If bit *x* received on an input lane belongs to a particular PCSL, the next bit of that same PCSL is received on the same input lane at bit position x+(z/m). The z/m PCSLs may arrive in any sequence on a given input lane.

For a PMA with n output lanes (Tx or Rx direction), each output lane carries, bit multiplexed, z/n PCSLs. Each output lane has a nominal signaling rate of $26.5625 \times z/n$ Gb/s. Each PCSL is mapped from a position in the sequence on one of the n input lanes to a position in the sequence on one of the n input lanes to a position in the sequence on one of the n output lane. If bit x sent on an output lane belongs to a particular PCSL, the next bit of that same PCSL is sent on the same output lane at bit position x + (z/n). The PMA shall maintain the chosen sequence of PCSLs on all output lanes while it is receiving a valid stream of bits on all input lanes.

Each PCSL received in any temporal position on an input lane is transferred into a temporal position on an output lane. As the PCS (see Clause 119) has fully flexible receive logic, an implementation is free to perform the mapping of PCSLs from input lanes to output lanes without constraint. Figure 120–6 illustrates one possible bit ordering for a 400GBASE-R 8:4 PMA bit mux. Other bit orderings are also valid.

Note that since the number of input lanes and output lanes for a 200GBASE-R or 400GBASE-R PMA is always a power of two, many PMAs converting between different numbers of lanes normally simply multiplex two or four input lanes to one output lane, or demultiplex two or four output lanes from one input lane. However, any PMA implementation which produces an allowable order of bits from all PCSLs on the output lanes is valid.

NOTE—PMA output lanes composed of some specific combinations of four PCSLs with specific skew offsets (e.g., 400GBASE-R PCSLs 0, 2, 4, and 10 with delays 0, 1, 0, and 2 bits, respectively) may have reduced transition density.

CC: PCSL interleaving, clock content (part 5) Comments 166, 169, 126, 127

Slides 10 and 17 from adopted baseline:

https://www.ieee802.org/3/df/public/22_10/22_1004/shrikhande_3df_01a_221004.pdf

Tx PCS/FEC Data Flow

- Based on two 802.3bs, CL119 sublayers in parallel
 - Two 400G FEC flows (flow-0 and flow-1)
- 66b round robin distribution into two 400G flows after 64B/66B encode
- Sub-blocks shown within each flow are identical to CL119, except :
 - AM values are made unique across the two flows
 - · AM insertion is aligned across the two flows
- 32 Flow lanes per 800GbE PCS
 - 16 per 400G flow
- Specific Flow lanes mapped to a given PMA output lane
 - 4:1 bit-muxing
 - Lanes chosen so all 4 FEC codewords are equally represented on each PMA output lane
 - Bitmux can be specified to occur in either the PCS or PMA sublayer (TBD).

		800G MII
		TXD<63:0> TXC<7:0> TX_CLK
OG PCS		1
ſ	64B/66B E	ncode and rate match
		+
ſ	66b B	lock Distribution
802.3bs	256B/257B Transcode	400G flow-1
1 1	Aligr	nment Insertion
(Pre-FEC distribution	Pre-FEC distribution
	PEC Encode	Distribution and Interleave
	FlowLane(0:15)	FlowLane[16:31]
	*	*
		or PMA sublayer 1 bitmuxing)

Flow lane Muxing

- 32 Flow Lanes to 8 PMA Lanes such that
 - Each PMA lane is a result of bitmux of 2 flow lanes from Flow 0 and 2 flow lanes from Flow 1
 This applies to all PMAs in the PHY
 - The PCS receiver includes full 32 lane reorder and deskew block so that
 - Any PMA output lane can connect to any PMA input lane
 - There can be non-zero skew between the 32 lanes (same skew limits as CL120)

17

CC: Precoding (part 1) Comment #175 - explained

C/ 120F	SC	120F.1	P 1	99	L 9	# 175
Dawe, Pier	s		Nvidi	а		80
Comment 120.5.		E esn't addre	Comment Status ess precoding in C20	-		precoding (CC)
Suggested Delete		1	ere or change 120.5.	7.2		
It appe and 40 inputs	OSED ars the OGAU and ou	ACCEPT at 120.5.7 II-4. The s		o inclu updat	ed to support optic)GBASE-1, 200GAUI-2, onal precoding on all

An editorial presentation will be provided showing the proposed changes.

120F.1 Overview

...

The 100GAUI-1, 200GAUI-2, and 400GAUI-4 C2C transmitter supports 1/(1+D) mod 4 precoding, as specified in 135.5.7.2 and 120.5.7.2, that may be enabled or disabled as required. The 100GAUI-1, 200GAUI-2, and 400GAUI-4 C2C receiver may support 1/(1+D) mod 4 precoding, as specified in 135.5.7.2 and 120.5.7.2. Precoding may be enabled and disabled using the precoder request mechanism specified in 135F.3.2.1.

December 6, 2022

400GAUI-4

In 802.3ck, precoding capability was specified for

updated to specify this option for 200GAUI-2 and

100GAUI-1, 200GAUI-2, and 400GAUI-4 (as shown by the last paragraph of 120F.1, below). 135.5.7.2 was updated to include 100GAUI-1, but 120.5.7.2 was not

CC: Precoding (part 2) Comment #171 - explained

C/ 173	SC 173.4.11	P 1	87	L 20	# 171
Dawe, Pie	rs	Nvidia	а		
Comment As I th		Comment Status address precoding	D		precoding (CC)
Suggestee	dRemedy				
Does	120.5.11.2 need	updating or is there a	a place i	n 135 that addres	sses it?
Proposed	Response	Response Status	w		
The b patter transm patter preco An ed Note t	ns specified in 12 nitter tests and th n, which is specif ding based on Al itorial presentatio	mbiguous about whe (0.5.11.2. All patterns us should be used w ied for receiver stres JI or PMD type and ti n will be provided sh 75 address missing c	s other t ithout p s testing he recei owing th	hat PRBS31Q an recoding enabled g, may be used w ver preference. he proposed char	. The PRBS31Q ith or without nges.

The comment addresses the fact that test patterns are defined without mention of precoding.

Patterns for transmitter testing should be defined without precoding.

However, a receiver may require precoding for meeting its requirements, and therefore precoding should be allowed for the PRBS31Q pattern.

This should be updated in both clause 120 and clause 135, but Clause 135 is out of scope for 802.3df since it deals only with 100GbE and 50GbE.

CC: Precoding (part 3)

45.2.1.140 PMA precoder control Rx input (Register 1.601)

The assignment of bits in the precoder control Rx input register is shown in Table 45-110.

Table 45-110-PMA precoder control Rx input register bit definitions

Bit(s)	Name	Description	R/W ⁴
1.601.15:4	Reserved	Value always 0	RO
1.601.3	Lane 3 Rx input precoder enable	1 = Lane 3 Rx input precoder enabled 0 = Lane 3 Rx input precoder disabled	R/W
1.601.2	Lane 2 Rx input precoder enable	1 = Lane 2 Rx input precoder enabled 0 = Lane 2 Rx input precoder disabled	R/W
1.601.1	Lane 1 Rx input precoder enable	1 = Lane 1 Rx input precoder enabled 0 = Lane 1 Rx input precoder disabled	R/W
1.601.0	Lane 0 Rx input precoder enable	1 = Lane 0 Rx input precoder enabled 0 = Lane 0 Rx input precoder disabled	R/W

Precoder control bits for RX input and TX output need to be expanded from 4 to 8 lanes.

45.2.1.139 PMA precoder control Tx output (Register 1.600)

The assignment of bits in the PMA precoder control Tx output register is shown in Table 45-109.

Table 45-109—PMA precoder control Tx output register bit definitions

Bit(s)	Name	Description	R/W
1.600.15:4	Reserved	Value always 0	RO
1.600.3	Lane 3 Tx output precoder enable	1 = Lane 3 Tx output precoder enabled 0 = Lane 3 Tx output precoder disabled	R/W
1.600.2	Lane 2 Tx output precoder enable	1 = Lane 2 Tx output precoder enabled 0 = Lane 2 Tx output precoder disabled	R/W
1.600.1	Lane 1 Tx output precoder enable	1 = Lane 1 Tx output precoder enabled 0 = Lane 1 Tx output precoder disabled	R/W
1.600.0	Lane 0 Tx output precoder enable	1 = Lane 0 Tx output precoder enabled 0 = Lane 0 Tx output precoder disabled	R/W

^aR/W = Read/Write, RO = Read only

aR/W = Read/Write, RO = Read only

45.2.1.142 PMA precoder control Tx input (Register 1.603)

The assignment of bits in the precoder control Tx input register is shown in Table 45-112.

Table 45–112—PMA precoder control Tx input register bit definitions

Bit(s)	Name	Description	R/Wa
1.603.15:2	Reserved	Value always 0	RO
1.603.1	Lane 1 Tx input precoder enable	1 = Lane 1 Tx input precoder enabled 0 = Lane 1 Tx input precoder disabled	R/W
1.603.0	Lane 0 Tx input precoder enable	1 = Lane 0 Tx input precoder enabled 0 = Lane 0 Tx input precoder disabled	R/W

^aR/W = Read/Write, RO = Read only

Precoder control bits for TX input and RX output need to be expanded from 2 to 8 lanes.

45.2.1.141 PMA precoder control Rx output (Register 1.602)

The assignment of bits in the precoder control Rx output register is shown in Table 45-111.

Table 45-111-PMA precoder control Rx output register bit definitions

Bit(s)	Name	Description	R/W ^a
1.602.15:2	Reserved	Value always 0	RO
1.602.1	Lane 1 Rx output precoder enable	1 = Lane 1 Rx output precoder enabled 0 = Lane 1 Rx output precoder disabled	R/W
1.602.0	Lane 0 Rx output precoder enable	1 = Lane 0 Rx output precoder enabled 0 = Lane 0 Rx output precoder disabled	R/W

^aR/W = Read/Write, RO = Read only

CC: Precoding (part 4)

Table 173-2-MDIO/PMA control variable mapping

MDIO variable	PMA/PMD register name	Register/ bit number	PMA control variable
PMA remote loopback	PMA/PMD control 1	1.0.1	Remote_loopback_enable
PMA local loopback	PMA/PMD control 1	1.0.0	Local_loopback_enable
Lane 0 to 7 Tx output precoder enable	PMA precoder control Tx output	1.600.0 to 1.600.7	precoder_tx_out_enable_<0: 7>
Lane 0 to 7 Rx input precoder enable	PMA precoder control Rx input	1.601.0 to 1.601.7	precoder_rx_in_enable_<0:7
PRBS31Q pattern enable	PRBS pattern testing control	1.1501.13	PRBS31Q_pattern_enable
SSPRQ pattern enable	PRBS pattern testing control	1.1501.14	SSPRQ_pattern_enable

Precoder control bits are missing for TX inputs and RX outputs.

CC: Precoding (part 5) Comments #175 and #171 - Proposed change for 173.4.7.2

Replace 173.4.7.2 with the following (based on 135.5.7.2 and 120.5.7.2)... 173.4.7.2 Precoding for PAM4 encoded lanes

The precoding specifications in this subclause apply to the input and output lanes of a PMA that are connected to the service interface of an 800GBASE-CR8 or 800GBASE-KR8 PMD, or are part of an 800GAUI-8 C2C link.

The PMA shall provide $1/(1+D) \mod 4$ precoding capability on each transmit lane and may optionally provide $1/(1+D) \mod 4$ decoding capability on each receive lane. Precoding is implemented as specified in 135.5.7.2.

The precoder is enabled independently on the Tx output, Rx input, Tx input, and Rx output on each lane. Precoding is enabled and disabled using variables precoder_tx_out_enable_*i*, precoder_rx_in_enable_*i*, precoder_rx_out_enable_*i*, and precoder_tx_in_enable_*i* (where *i* is in the range 0 to 7). If a Clause 45 MDIO is implemented, these variables are accessible through registers as shown in Table 173-2.

If the PMA is connected to the service interface of an 800GBASE-CR8 or 800GBASE-KR8 PMD and training is enabled by the management variable mr_training_enable (see 136.7), then precoder_tx_out_enable_i and precoder_rx_in_enable_i shall be set as determined by the PMD control function in the LINK_READY state on lane *i* (see 136.8.11.7.5 and Figure 136–7). The method by which the PMD control function affects these variables is implementation dependent.

If the PMA is connected to the service interface of an 800GBASE-CR8 or 800GBASE-KR8 PMD and training is disabled by the management variable mr_training_enable, or if the PMA is part of an 800GAUI-8 link, then precoder_tx_out_enable_*i*, precoder_rx_in_enable_*i*, precoder_tx_in_enable_*i*, and precoder_rx_out_enable_*i* are set as required by the implementation. The method described in 135F.3.2.1 may be used for 800GAUI-8 C2C.

CC: Precoding (part 6) Comments #175 and #171 - Proposed change for 173.4.7.2

In 173.5, Table 173-2 add the following control variables. precoder_rx_out_enable_0:7, precoder_tx_in_enable_0:7

In Clause 45, add control bits for the following:

precoder_tx_out_enable_4:7, precoder_rx_in_enable_4:7, precoder_rx_out_enable_2:7, precoder_tx_in_enable_2:7

CC: Precoding (part 6) Comments #175 and #171 – Precoding for test patterns

The following changes address ambiguity in the test pattern definitions regarding precoding.

Add the the following text to 120.5.11.2:

All test patterns specified in this subclause are defined without precoding.

Add the following text to 120.5.11.2.2:

Precoding may be applied to the PRBS31Q pattern by enabling precoding in the PMA output or input as required.

120.5.11.2 Test patterns for PAM4 encoded signals

For a 200GBASE-R PMA with 4 output lanes or a 400GBASE-R PMA with 4 or 8 output lanes using PAM4 encoding, the test patterns described in this clause may optionally be supported.

The patterns PRBS13Q and square wave (quaternary) can be enabled on a lane-by-lane basis. The patterns PRBS31Q and SSPRQ can be enabled on all lanes of an interface at once. If per-lane pattern(s) are enabled for a subset of the lanes and a per-interface pattern is also enabled, the per-lane patterns are generated only on the indicated lanes and the per-interface pattern is generated on the remaining lanes. The behavior if more than one per-lane pattern is enabled for the same lane or more than one per-interface pattern is enabled is not defined.

120.5.11.2.2 PRBS31Q test pattern

A PMA may optionally include a PRBS31Q pattern generator as specified in this subclause. The ability to generate PRBS31Q patterns in each direction of transmission are indicated by the PRBS31Q_gen_Tx_ability and PRBS31Q_gen_Rx_ability status variables, reflecting the ability to check PRBS31Q patterns in each direction of transmission are indicated by the PRBS31Q_tx_checker_ability and PRBS31Q_Rx_checker_ability status variables. If a Clause 45 MDIO is implemented, the PRBS31Q_gen_Tx_ability, PRBS31Q_gen_Rx_ability, PRBS31Q_Tx_checker_ability and PRBS31Q_Rx_checker_ability, PRBS31Q_gen_Rx_ability, PRBS31Q_Tx_checker_ability and PRBS31Q_Rx_checker_ability, and PRBS31Q_Rx_checker_ability status variables are accessible through the PRBS31Q_Rx_checker ability bits 1.1500.9, 1.1500.7, 1.1500.8, and 1.1500.6 (see 45.2.1.169).

The PRBS31O test pattern is a repeating 2^{31} -1-symbol sequence formed by Grav coding pairs of bits from two repetitions of the PRBS31 pattern defined in 49.2.8 into PAM4 symbols as described in 120.5.7.1. Since the PRBS31 pattern is an odd number of bits in length, bits that are mapped as the first bit of a PAM4 symbol during one repetition of the PRBS31 sequence are mapped as the second bit of a PAM4 symbol during the next repetition of the PRBS31 sequence, and bits that are mapped as the second bit of a PAM4 symbol during one repetition of the PRBS31 sequence are mapped as the first bit of the following symbol in the next repetition of the PRBS31 sequence. For example, if the PRBS31 generator used to create the PRBS31Q sequence is initialized to a seed value of all ones, the PRBS31Q sequence begins with the following Grav coded PAM4 symbols, transmitted left to right: recommended that the PRBS31 patterns used to generate the PRBS31Q pattern on each lane are generated from independent, random seeds, or at a minimum offset of 20 000 UI between the PRBS31 sequence used to generate the PRBS310 pattern on any lane and any other lane. A PRBS310 pattern checker operates by converting PAM4 symbols received on each input lane to pairs of bits as described in 120.5.7.1 and then using a PRBS31 pattern checker on the resulting bit stream. The checker shall increment the test-pattern error counter by one for each incoming bit error in the PRBS31 pattern for isolated single bit errors. Implementations should be capable of counting at least one error whenever one or more errors occur in a sliding 1000-bit window.

If supported, when send Tx PRBS31Q test pattern is enabled by the PRBS31Q pattern_enable and PRBS_Tx_gen_enable control variables, the PMA shall generate a PRBS31Q pattern on each of the lanes toward the service interface below the PMA via the *inst*:IS_UNITDATA_i.request primitive. When send Tx

If supported, when check Rx PRBS31Q test pattern mode is enabled by the PRBS31Q_pattern_enable and PRBS_Rx_check_enable control variables, the PMA checks for the PRBS31Q pattern on each of the lanes received from the service interface below the PMA via the *inst*.1S_UNITDATA_*i*.indication primitive. If a Clause 45 MDIO is implemented, the PRBS31Q_pattern_enable and PRBS_Rx_check_enable control variables are accessible through bits 1.1501.13 and 1.1501.0 (see 45.2.1.170). The Rx test-pattern error counters Ln0_PRBS_Rx_test_error_counter through either Ln3_PRBS_Rx_test_error_counter or Ln7_PRBS_Rx_test_error_counter (depending on whether the number of lanes is 4 or 8) count, per lane, errors in detecting the PRBS31 pattern resulting from converting the PAM4 symbols received on each lane to pairs of bits. If a Clause 45 MDIO is implemented, these counters are accessible through registers 1.1700 through 1.1703 or 1.1707 (depending on whether the number of lanes is 4 or 8) (see 45.2.1.174). While in check Rx PRBS31Q mode, the PMA1S_SIGNAL_indication primitive does not indicate a valid signal. When check Rx PRBS31Q test pattern is disabled, the PMA returns to normal operation performing bit multiplexing as described in 120.5.2.

iplexing as nable and 501.3 (see

enable and of the lanes o generates tatus at the enable and 501.1 (see operation

enable and of the lanes 5 MDIO is accessible ter or t, per lane, n each lane ters 1.1600 (73). When or counting in 120.5.2. ningful for

Test Patterns (part 1) Comments 27, 186

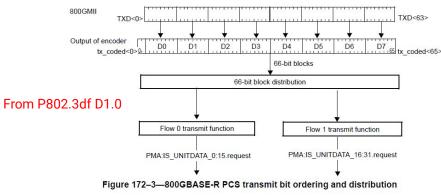
C/ 172	SC	172.2.4.9	P1	67	L 25	# 27
Bruckman	, Leon		Huav	vei		1.0
Comment		T t pattern sh	Comment Status	-	together	test pattern (CC,
Suggested It may			ote that the test fur	iction wh	en activated affe	ects both flows
Proposed	Respo	nse	Response Status	w		
				the Enc		it block distribution.
C/ 172	SC 1	172.2.4.9	P 10	67	L 25	# 186
Dawe, Pier	s		Nvidia			XC .
Comment 1	Туре	E	Comment Status	D		test pattern (CC)
pattern	, and a		s generated in an a			nere is only one test 9, it's a different PCS
Suggested	Remed	y				
		scrambled .2.4.9".	idle test pattern ca	n be gen	erated in the sar	ne way in the same
Proposed P	Respon	se	Response Status	W		
Change "Test-p to	e from attern	generators	N PRINCIPLE. are identical to that pattern functionality			fied in 110.2.4.0"
			pattern to cuo ant	is ident		
			T L:		eds to be upo	

172.2.4.9 Test-pattern generators

Test-pattern generators are identical to that specified in 119.2.4.9.

119.2.4.9 Test-pattern generators

From IEEE Std 802.3-2022


From P802.3df D1.0

The PCS shall have the ability to generate a scrambled idle test pattern which is suitable for receiver tests and for certain transmitter tests. When a scrambled idle pattern is enabled, the test pattern is generated by the PCS. The test pattern is an idle control block (block type=0x1E) with all idles as defined in Figure 82–5. The test pattern is sent continuously and is transcoded, scrambled, alignment markers are inserted and finally encapsulated by the FEC.

When the transmit channel is operating in test-pattern mode, the encoded bit stream is distributed to the PCS Lanes as in normal operation (see 119.2.4.7).

If a Clause 45 MDIO is implemented, then control of the test-pattern generation is from the BASE-R PCS test-pattern control register (bit 3.42.3).

For scrambled idle, an idle block is continuous inserted here.

The scrambled idle is distributed over all 32 PCS lanes.

This is not accurately/clearly described in 119.2.4.9 for 800GbE.

December 6, 2022

IEEE P802.3df Task Force, December 2022

Test Patterns (part 1) Comments 129, 143

Replace the text in 172.2.4.9 as follows, making it more relevant to 800GbE...

172.2.4.9 Test-pattern generator

The PCS shall have the ability to generate a scrambled idle test pattern which is suitable for receiver tests and for certain transmitter tests. When a scrambled idle pattern is enabled, the test pattern is generated by the PCS. The scrambled idle test pattern is the output of the PCS when the input to the PCS at the 800GMII is a control block with all idle characters.

If a Clause 45 MDIO is implemented, then control of the test-pattern generation is from the BASE-R PCS test-pattern control register (bit 3.42.3).

Test Patterns (part 2) Comments 129, 143

	10404.0		0.000	37	
C/ 124	SC	124.8.1	P 75	L 4	# 129
Dawe, Pie	rs		Nvidia		
Comment	Туре	E	Comment Status	D	test pattern (CC)
800G	scramb	oled idle is	n't in 119.2.4.9: differe	ent rate, different	PCS. See another comment.
Suggested In Tab		-	9.2.4.9, add "or 172.2	2.4.9"	
Proposed	Respo	nse	Response Status	w	
			IN PRINCIPLE. emedy with editorial li	cense	

124.8.1 Test patterns for optical parameters From IEEE Std 802.3-2022

While compliance is to be achieved in normal operation, specific test patterns are defined for measurement consistency and to enable measurement of some parameters. Table 124–10 gives the test patterns to be used in each measurement, unless otherwise specified, and also lists references to the subclauses in which each parameter is defined. Any of the test patterns given for a particular test in Table 124–10 may be used to perform that test. The test patterns used in this clause are shown in Table 124–9.

Table 124-9-Test patterns

Pattern	Pattern description	Defined in		
Square wave	Square wave (8 threes, 8 zeros)	120.5.11.2.4		
3	PRBS31Q	120.5.11.2.2		
4	PRBS13Q	120.5.11.2.1		
5	Scrambled idle	119.2.4.9		
6	SSPRQ	120.5.11.2.3		

C/ 167	SC	167.8.1	P1	17	L 4	# 143
Dawe, Pie	ers		Nvidia	a		
Comment	Туре	Т	Comment Status	D		test pattern (CC)
In Tat comm		-10, Test p	atterns, need a new	referen	ce for scramble	d idle. See another
Suggester	dReme	dy				
~	-				101 1101	

Change "82.2.11 and 91, or 119.2.4.9" to "82.2.11 and 91, or 119.2.4.9, or 172.2.4.9"

Proposed Response Response Status W

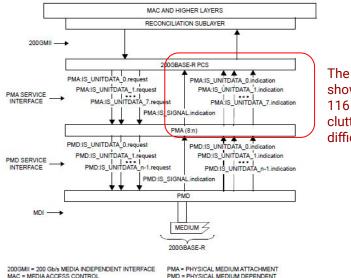
PROPOSED ACCEPT IN PRINCIPLE.

Implement suggested remedy with editorial license.

167.8.1 Test patterns for optical parameters

From P802.3db Draft 3.2

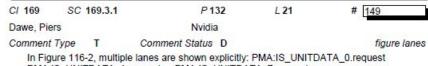
While compliance is to be achieved in normal operation, specific test patterns are defined for measurement consistency and to enable measurement of some parameters. Table 167–11 gives the test patterns to be used in each measurement, unless otherwise specified, and also lists references to the subclauses in which each parameter is defined. Any of the test patterns given for a particular test in Table 167–11 may be used to perform that test. The test patterns used in this clause are shown in Table 167–10.


Table 167-10-Test patterns

Pattern	Pattern description	Defined in
Square wave	Square wave (8 threes, 8 zeros)	120.5.11.2.4
3	PRBS31Q	120.5.11.2.2
4	PRBS13Q	120.5.11.2.1
5	Scrambled idle encoded by RS-FEC	82.2.11 and 91, or 119.2.4.9
6	SSPRQ	120.5.11.2.3

IEEE P802.3df Task

Clause 169 (Matt)

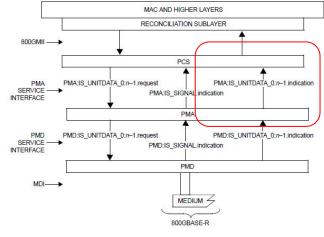

Clause 169: Figure Lanes Comment 149

MAC = MEDIA ACCESS CONTROL MDI = MEDIUM DEPENDENT INTERFACE PCS = PHYSICAL CODING SUBLAYER PMA = PHYSICAL MEDIUM ATTACHMENT PMD = PHYSICAL MEDIUM DEPENDENT n = NUMBER OF PARALLEL STREAMS OF DATA UNITS

Figure 116-2-200GBASE-R inter-sublayer service interfaces

The interfaces as shown in Clause 116 were overly cluttered and difficult to read.

PMA:IS_UNITDATA_1.request ... PMA:IS_UNITDATA_7.request


SuggestedRemedy

As a compromise, follow e.g. Figure 120G-2; add the short diagonal lines "n" to show n lanes, not n requests on one lane with a constant ordering. Several figures, including Fig 172-2 where showing the numbers, 16 and 32, will be helpful.

Proposed Response Response Status W

PROPOSED REJECT.

A single line with an SI parameter with vector notation clearly conveys the fact that there are multiple lanes 0 to n-1. This approach is used to reduce the clutter compared to similar diagrams in Clause 116. This approach is used consistently in various figures in 802.3df. The proposed changes do not improve the accuracy or clarity of the draft.

800GMII = 800 Gb/s MEDIA INDEPENDENT INTERFACE MAC = MEDIA ACCESS CONTROL MDI = MEDIUM DEPENDENT INTERFACE PCS = PHYSICAL CODING SUBLAYER PMA = PHYSICAL MEDIUM ATTACHMENT PMD = PHYSICAL MEDIUM DEPENDENT n = NUMBER OF PARALLEL STREAMS OF DATA UNITS

December 6, 2022

IEEE P802.3df Ta Fi

Figure 169–2—800GBASE-R inter-sublayer service interfaces not including 800GMII Extender In new clauses 169.

vector is used to

the clutter.

legend.

173. etc., a parameter

convey a multitude of

lanes, greatly reducing

evident both due to the

vector format and the

Number of lanes is

related note in the

Clause 169: AN linked device Comment 148

C/ 169 SC 169.2.5

P 130 Nvidia # 148

AN

Dawe, Piers

Comment Type E Comment Status D

Is a "linked device" defined or explained anywhere"? The definition and use of "link" is a delicate area.

/ 50

SuggestedRemedy

Delete "linked". In the next line, change "the link" to "a link".

Proposed Response Response Status W

PROPOSED ACCEPT IN PRINCIPLE.

The language in this paragraph is consistent with similar subclause 80.2.6 (802.3-2022) and 116.2.5a (802.3ck-2022). However, the term "linked device" rather than just "device" does not seem to provide any useful information. However, the other device is the one on the same link as the local device so "the link" rather than "a link" is correct.

Change "linked device" to "link".

[Editor's note: Page changed from 130 to 131.]

From P802.3df D1.0...

The final remedy should be: Change "linked device" to "device".

From P802.3df D1.0...

169.2.6 Auto-Negotiation

Auto-Negotiation provides a linked device with the capability to detect the abilities (modes of operation) supported by the device at the other end of the link, determine common abilities, and configure for joint operation.

From IEEE Std 802.3-2022

69.2.4 Auto-Negotiation

Auto-Negotiation provides a linked device with the capability to detect the abilities (modes of operation) supported by the device at the other end of the link, determine common abilities, and configure for joint operation.

80.2.6 Auto-Negotiation

Auto-Negotiation provides a linked device with the capability to detect the abilities (modes of operation) supported by the device at the other end of the link, determine common abilities, and configure for joint operation.

From P802.3ck D3.3...

Insert new subclause 116.2.5a as follows:

116.2.5a Auto-Negotiation

Auto-Negotiation provides a linked device with the capability to detect the abilities (modes of operation) supported by the device at the other end of the link, determine common abilities, and configure for joint operation.

Clause 169: PMA description Comment 147

C/ 169	SC 169.2.4	P 130	# 147	
Dawe, Piers		Nvidia		10
Comment Typ	pe E	Comment Status D		PMA description

Wow, this is too mean with the information. Compare 116.2.4: the equivalent of this is missing: "The 200GBASE-R and 400GBASE-R PMAs perform the mapping of transmit and receive data streams between the PCS and PMA via the PMA service interface, and the mapping and multiplexing of transmit and receive data streams between the PMA and PMD via the PMD service interface. In addition, the PMA performs retiming of the received data stream when appropriate, optionally provides data loopback at the PMA or PMD service interface, and optionally provides test pattern generation and checking."

SuggestedRemedy

At least say that a PMA connects the PCS and PMA via the PMA service interface, and the PMA and PMD via the PMD service interface, and that there can be more than one PMA (in series) for one MAC. It performs retiming of the received data stream when appropriate. There are optional defined physical instantiations called AUIs.

And/or, at line 35, add "and a summary of its functions is given in 173.1.3".

Proposed Response Response Status W

PROPOSED REJECT.

The description provided in Clause 116 was overly verbose with repeated details that are listed in the reference PMA clause. The PMA description in Clause 169 provides the general function of a PMA with similar detail provided in the other sublayer descriptions and references the relevant PMA subclauses where the reader may find all of the details relevant to each PMA type.

From IEEE Std 802.3-2022, regarding 200G/400G PMAs

116.2.4 Physical Medium Attachment (PMA) sublayer

The PMA provides a medium-independent means for the PCS to support the use of a range of physical media. The 200GBASE-R and 400GBASE-R PMAs perform the mapping of transmit and receive data streams between the PCS and PMA via the PMA service interface, and the mapping and multiplexing of transmit and receive data streams between the PMA and PMD via the PMD service interface. In addition, the PMA performs retinning of the received data stream when appropriate, optionally provides data loopback at the PMA or PMD service interface, and optionally provides test pattern generation and checking.

The 200GBASE-R and 400GBASE-R PMAs are specified in Clause 120.

Note that 802.3cw defines a new 400GBASE-ZR PMA with different functionality than the 400GBASE-R PMA. Likely for 800 Gb/s 40 km SMF and maybe for 10 km SMF, we'll see a similarly unique PMA defined.

From P802.3df D1.0 regarding 800G PMA

169.2.4 Physical Medium Attachment (PMA) sublayer

The PMA sublayer provides a medium-independent means to support the use of a range of physical media.

The 800GBASE-R PMA is specified in Clause 173.

173.1.3 Summary of functions

The following is a summary of the principal functions implemented (when required) by the PMA in both the transmit and receive directions:

- Adapt the PCSL (PCS lane) formatted signal to the appropriate number of abstract or physical lanes
- Provide per input-lane clock and data recovery
- Provide bit-level multiplexing
- Provide clock generation
- Provide signal drivers
- Optionally provide local loopback to/from the PMA service interface
- Optionally provide remote loopback to/from the PMD service interface
- Optionally provide test-pattern generation and detection
- Tolerate Skew Variation
- Perform PAM4 encoding and decoding
- Provide receive link status information in the receive direction

Annex 120F+120G, Clause 162+163 (Adee)

Tx Signaling rate range Comments 50, 140

	SC	120F.3.1	P 201	L 10	# 50
Huber, Tom	n i		Nokia		
Comment T	vpe	E	Comment Status D		rate rang
The ins	erted	text is mor	e complex than is necessar	y.	
SuggestedF	eme	dy			
			C or for 100GAUI-1, 200GA 2, 400GAUI-4, or 800GAUI-		UI-4 C2C with" to
Proposed R	espo	nse	Response Status W		
PROPC	SED	ACCEPTI	N PRINCIPLE.		
Therefo In Table ("For 100	re, th 120	e suggeste F-1 change JI-1, 200G/	nterfaces, for which it is cor d remedy would not be corr the first sentence in footno UI-2, or 400GAUI-4 C2C w 800GAUI-8 C2C."	ect. However, th te a to the follow	ring:
	GAL	JI-1, 200GA	the first sentence in footnot UI-2, or 400GAUI-4 C2M w 800GAUI-8 C2M."		

Parameter	Reference	Value	Units
Signaling rate, each lane (range)		$53.125\pm50\ ppm^a$	GBd

^aFor 800GAUL-8 C2C or for 100GAUL-1, 200GAUL-2, or 400GAUL-4 C2C with a PMA in the same package as the PCS sublayer. In other cases, the signaling rate is derived from the signaling rate presented to the input lanes (see Figure 135–3 and Figure 120–3) by the adjacent PMD, PMA, or FEC sublayers.

Table 120G-1 footnote a has corresponding text for C2M

OF TOL	SC	162.9.4	P 93	L 17	# 140
Dawe, Pie	ers		Nvidia		
Comment	Туре	E	Comment Status D		rate range
			8 PMD or for a 100GBASE- package as the PCS sublay		
Suggester	Reme	dy			
At lea	st put a	comma a	fter "CR8 PMD". Also in 16	3.9.2.	
Proposed	Respo	nse	Response Status W		
PROF	OSED	ACCEPT	IN PRINCIPLE.		
		00	d remedy would not be corre		
In Tab	ole 162-	-11 change	d remedy would not be correct the first sentence in footno 200GBASE-CR2. or 400GB/	te a to the followi	ng:
In Tat "For 1	ole 162 00GBA	-11 change	the first sentence in footno	te a to the followi	ng:
In Tab "For 1 packa	ole 162 00GBA ge as t	-11 change SE-CR1, 2 he PCS su	e the first sentence in footno 200GBASE-CR2, or 400GB/	te a to the followi ASE-CR4 PMD w E-CR8 PMD."	ng: ith a PMA in the same
In Tak "For 1 packa In Tak "For 1	ole 162 00GBA ge as t ole 163 00GBA	- <u>11 change</u> SE-CR1, 2 he PCS su -5 change 1	the first sentence in footno 200GBASE-CR2, or 400GB, blayer or for any 800GBASI the first sentence in footnote 200GBASE-KR2, or 400GB/	te a to the followin ASE-CR4 PMD w E-CR8 PMD." e a to the followin ASE-KR4 PMD w	ng: ith a PMA in the same g:
In Tak "For 1 packa In Tak "For 1	ole 162 00GBA ge as t ole 163 00GBA	- <u>11 change</u> SE-CR1, 2 he PCS su -5 change 1	the first sentence in footno 200GBASE-CR2, or 400GB, blayer or for any 800GBASE the first sentence in footnote	te a to the followin ASE-CR4 PMD w E-CR8 PMD." e a to the followin ASE-KR4 PMD w	ng: ith a PMA in the same g:
In Tat "For 1 packa In Tat "For 1 packa	ole 162 00GBA ge as t ole 163 00GBA ge as t	- <u>11 change</u> SE-CR1, 2 he PCS su -5 change 1	the first sentence in footno 2006BASE-CR2, or 400GB, blayer or for any 800GBASI the first sentence in footnote 2006BASE-KR2, or 400GB, blayer or for any 800GBASI	te a to the followin ASE-CR4 PMD w E-CR8 PMD." e a to the followin ASE-KR4 PMD w	ng: ith a PMA in the same g:

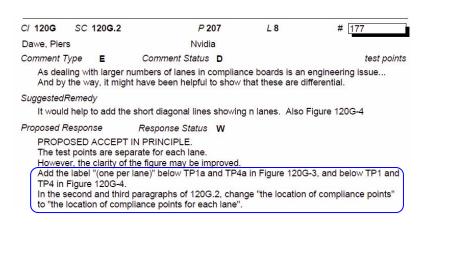
Parameter	Subclause reference	Value	Units
Signaling rate, each lane (range)	162.9.4.1	$53.125\pm50~ppm^a$	GBd

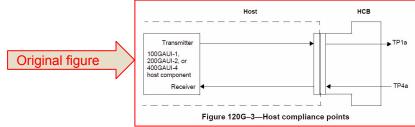
^aFor an 800GBASE-CR8 PMD or for a 100GBASE-CR1_200GBASE-CR2_ or 400GBASE-CR4 PMD in the same package as the PCS sublayer. In other cases, the signaling rate is derived from the input to the PMD transmit function provided by the adjacent PMA sublayer.

Table 163-5 footnote a has corresponding text for KR

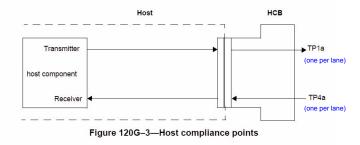
Long annex titles - comment 174

Cl 120F Dawe, Piers				P 198 Ividia	L 8	# 174		(100GAUI-1 C2C), 200 G (200GAUI-2 C2C), and 4	one-lane Attachment Unit Interface Bb/s two-lane Attachment Unit Interface 100 Gb/s four-lane Attachment Unit
Comment T		Е.,	Comment Sta			clause nar	ne	•	2C) <u>, and 800 Gb/s eight-lane Attachment</u>
		lengtheni be even w		a five-line ti	le is too long. If	we had 16 x 100G		Unit Interface (800GAU	-8 626
SuggestedF	Remed	/					Change the title of 120F.5 as follows:		
Chip-to- C2C, 40 Similarl <i>Proposed R</i>	chip 1 0GAU y for 12 espon	00 Gb/s/la I-4 C2C, a 20G se	ame PMD claus ane Attachment and 800GAUI-8 <i>Response Sta</i> IN PRINCIPLE.	Unit Interfa C2C	ces type 100GAL	II-1 C2C, 200GAUI-2	Annex 120F, Chip-to-chip 100 (100GAUI-1 C2C), 200 Gb/s tw C2C), and 400 Gb/s four-lane	n conformance statement (PICS) proforma for Gb/s one-lane Attachment Unit Interface o-lane Attachment Unit Interface (200GAUI-2 Ltachment Unit Interface (400GAUI-4 C2C)_ Iment Unit Interface (800GAUI-8 C2C) ¹	Change the title of 120E.5.4 as follows: 120F.5.4 PICS proforma tables for Chip-to-chip 100 Gb/s one-lane Attachmen
The title	s are i	ndeed lon	ng and can be sl	nortened an	d clarified.		120F.5.1 Introduction		Interface (100GAUI-1 C2C), 200 Gb/s two-lane Attachment Unit Interface (200GAUI-2 C2C), and 400 Gb/s four-lane Attachment Unit Interface
for AUI The sar	. Ther ne form	efore a sli n used for	introduces the v ight modification r PMD clause tit ex 120F to:	is propose	d.	used for PHY but not	The supplier of a protocol implementation one-lane Attachment Unit Interface (100 (200GAUI-2 C2C)and 400 Gb/s four-la	- Mathematical Conformation Annex 120F, Chip-to-chip 100 Gb/s GAUI-1 C2C), 200 Gb/s two-lane Attachment Unit Interface ac Attachment Unit Interface (400GAUI-4 C2C), and 800 Gb/s (800GAUI-8 C2C), shall complete the following protoco	(400GAUI-4 C2C) <u>, and 800 Gb/s eight-lane Attachment Unit Interface (800GAU C2C)</u>
		Attachmer GAUI-8 C		s 100GAUI-	1 C2C, 200GAUI	-2 C2C, 400GAUI-4	implementation conformance statement (r	coprotina.	
"Chip-to	-modu			aces 100GA	UI-1 C2M, 200G	AUI-2 C2M, 400GAUI	120F.5.2 Identification 120F.5.2.2 Protocol summary Change the table in 120F.5.2.2 as follows		
Change	the tit	es of 120	F.5, 120F.5.4, 1	20G.6, 120	G.6.4, the text in	120F.5.1 and			
					2.2 accordingly.		Identification of protocol standard	IEEE Std 802.3ekdf-202x, Annex 120F, Chip-to-chip 100 Gb/s one-lane Attachment Unit Interface (100GAUI-	
Change	any te	ext affecte	d by these title	changes wit	h editorial license	ð.		100 G0 s one-tane Attachment Ofin Interface (100 GD) 1 C (2), 200 Gb/s two-lane Attachment Unit Interface (200GAUT-2 C 2C), and 400 Gb/s four-lane Attachment Unit Interface (400GAUT-4 C 2C), and 800 Gb/s eight-lane Attachment Unit Interface (800GAUT-8 C 2C)	
							Identification of amandmante and corrisonda	is this	Corresponding changes in Annex 120G-1 for C2M


Change the title of Annex 120F (added to IEEE Std 802.3-2022 by IEEE Std 802.3ck-20xx) as follows:


Annex 120F

(normative)


December 6, 2022

C2M Test points - comment 177

Replace Figure 120G-3 with the following:

For each lane

Figure 120G–3 depicts the location of compliance points when measuring 100GAUI-1, 200GAUI-2, or 400GAUI-4-C2M host compliance. The output of the Host Compliance Board (HCB) is used to verify the host electrical output signal at TP1a. The input of the HCB at TP4a is used to verify the host input compliance.

Corresponding changes in Figure 120G-4 for TP1, TP4

Training pattern PRBS seed - comments 137, 138

In Table 162-10a, change the heading of the fourth column from "Default seed bits" to

L 8

137

PRBS seed

P 92

the state of the PRBS generator shall be set to a value in the variable - eh? If the variable

The text referred to by the comment is based on existing text in clause 136: "At the start of the training pattern, the state of the PRBS generator shall be set to the value seed I". This text provides sufficient information for correct implementation the PMD control function.

Nvidia

Comment Status D

Response Status W

The suggested remedy does not provide sufficient detail to implement.

C/ 162 SC 162.8.11.1 P 92 L 9 # 138 Dawe, Piers Nvidia	N -		At the start of the training default value of seed_ <i>i</i> shall				
Comment Type T Comment Status D PRBS seed The variable seed_is not defined. 136.8.11.1.3 says "The default value of seed_ishall be the value given in Table 136-8 for p = I," but neither p nor Table 136-8 apply here. Maybe they should? Naybe	Content in clause 136 (reference)	р	Polynomial_p, G(x)	Default seed bits ^a	Initial output, PAM2	Initial output, PAM4	Initial output, PAM4 with precoding
SuggestedRemedy If the seed bits in Table 162-10a are the defaults for seed_i, say so.		0	$1 + x + x^2 + x^{12} + x^{13}$	0000010101011	0030330330000	1031320220111 ^b	1301200200101
Proposed Response Response Status W PROPOSED ACCEPT IN PRINCIPLE. In the third paragraph of 162.8.11.1, change "the default seed for each lane" to "the default value of seed i for each lane i".	Insert new subcla	use	162.8.11.1:				

162.8.11.1 Training pattern polynomials and seeds

The PRBS generator for each lane shall implement four generator polynomials. The polynomial used in each lane i is selected by the variable identifier i.

At the start of the training pattern in each lane *i*, the state of the PRBS generator shall be set to a value in the variable seed *i*. A value of all zeros is not valid.

Table 162–10a specifies the default identifier, the corresponding polynomial, and the default seed for each land, as well as the first 13 symbols of the training pattern for each modulation and precoding mode created using the default polynomial and seed.

Table 162–10a—Training pattern default polynomials and seeds

i	Default identifier	Polynomial, <i>G(x)</i>	Default seed bits ^a	Initial output, PAM2	Initial output, PAM4	Initial output, PAM4 with precoding
0	0 ^b	$1 + x + x^2 + x^{12} + x^{13}$	0000010101011	0030330330000	1031320220111	1301200200101

"Default seed_i".

SC 162.8.11.1

is a 13-bit seed, it contains 0s and 1s.

C/ 162

Dawe, Piers

Comment Type T

SuggestedRemedy

Proposed Response

Rewrite for clarity

PROPOSED REJECT.

Training pattern PRBS seed - comment 139

C/ 162	SC 162.8.11.	1 P 92	L 29	# [139
Dawe, Piers		Nvidia		
Comment Ty	pe TR	Comment Status D		PRBS seed

Dedault seeds 4 to 7 are different to seeds 0 to 3, contrary to the ETC 800G spec. No implementation can follow the ETC spec AND this draft (because the default seeds differ) but there is no benefit in the difference.

We have written generations of PMD and AUI clauses that use the same pattern on multiple lanes, but they should be skewed, e.g. 120G.3.2.2: "For the case where PRBS13Q or PRBS31Q are used with a common clock, there is at least 31 Ul delay between the patterns on one lane and any other lane, so that the symbols on each lane are not correlated." The training frame is 98.3% PRBS13Q. In principle, one could incur the risk warned against with a lane carrying "identifier_i" = 0 and an adjacent lane carrying "identifier_i" = 4, with an unlucky timing offset between lanes. As "The PMD shall implement one instance of the PMD control function described in 138.8.11 for each lane", the state machine for each lane can be started and restarted asynchronous to adjacent lanes, so starting the training pattern with a different seed won't solve the issue.

SuggestedRemedy

 Make the default seeds in Table 162-10a the same as in the ETC spec (seeds 4 to 7 are the same as seeds 0 to 3).

2. ETC say "it is recommended to ensure that physically adjacent lanes do not use the same polynomial". Recommend this.

 Also, point out that significant correlation between any lanes can be avoided by a combination of seed and timing offset. Leave it to the implementer to choose how to do this.

Proposed Response Response Status W

PROPOSED REJECT.

Aligning an IEEE standard with a previously published document may be preferable where possible, but it is not always done.

The default seed values were explicitly set by the adopted baseline proposal https://www.ieee802.org/3/df/public/22_09/lusted_3df_01a_2209.pdf, which included a

detailed description, and was approved by unanimous consent.

The seed values are not normative, and using non-default values is permitted, so there is no compliance concern.

The content of item 2 and 4 of the suggested remedy is covered by text in 45.2.1.168 ("should" is a recommendation). Resolve with #122.

162.8.11.1 Training pattern polynomials and seeds

The PRBS generator for each lane shall implement four generator polynomials. The polynomial used in each lane i is selected by the variable identifier_i.

At the start of the training pattern in each lane i, the state of the PRBS generator shall be set to a value in the variable seed_i. A value of all zeros is not valid.

Table 162–10a specifies the default identifier, the corresponding polynomial, and the default seed for each lane, as well as the first 13 symbols of the training pattern for each modulation and precoding mode created using the default polynomial and seed.

The corresponding text in 45.2.1.168 (per proposed response to bucket comment 122) is:

The polynomial identifier for each lane should be unique to avoid a risk of impairment of the PMD control function. If the same polynomial identifier is used for multiple lanes, different initial seeds should be used for each of those lanes,

For reference: adopted baseline proposal

https://www.ieee802.org/3/df/public/22 09/lusted 3df 01a 2209.pdf

Training pattern PRBS seed - comment 122 (bucket; for reference only)

C/ 45	SC	45.2.1.168	P 4:	2	L 24	# 122
Dawe, Pi	iers		Nvidia	a		
Commen	t Type	TR	Comment Status	D		PRBS seed (bucket1)

This says "The polynomial identifier for each lane should be unique; two physically adjacent lanes having the same identifier could impair operation of the PMD control function."

This is in a section defining the meanings of bits in a memory map. The memory map serves the sublayer, not the other way round. Advice about signal integrity should be in the clause concerned.

With only four polynomials and eight lanes, the polynomials themselves can't all be different, but that's OK. Impairment is very unlikely unless adjacent lanes use the same polynomial AND the PRBS13Qs in the training pattern are aligned in time with each other. We have written generations of PMD and AUI clauses that use the same pattern on multiple lanes, but they should be skewed, e.g. 120G.3.2.2; "For the case where PRBS13Q or PRBS31Q are used with a common clock, there is at least 31 UI delay between the patterns on one lane and any other lane, so that the symbols on each lane are not correlated." The training frame is 98.3% PRBS13Q. In principle, one could incur the risk warned against with a lane carrying "identifier i" = 0 and an adjacent lane carrying "identifier i" = 4, with an unlucky timing offset between lanes. As "The PMD shall implement one instance of the PMD control function described in 136.8.11 for each lane", the state machine for each lane can be started and restarted asynchronous to adjacent lanes, so starting the training pattern with a different seed won't solve the issue. The text "For 8-lane use cases different initial seeds should be used where the same polynomial is being reused" recommends a course of action that, on investigation, doesn't address the issue. We should tell the reader what to avoid, not how to avoid it.

Also, the ETC spec has already covered this ground. It uses the same four polynomials and seeds, twice over. No implementation can follow the ETC spec AND this draft (because the default seeds differ) but there is no benefit in the difference.

SuggestedRemedy

 Put signal integrity recommendations in the spec, not in the register definitions for a memory map!

2. Change "The polynomial identifier for each lane should be unique; two physically adjacent lanes having the same identifier could impair operation of the PMD control function" to "The polynomial identifier for adjacent lanes should be unique to avoid a risk of impairment of the PMD control function".

3. Change "For 8-lane use cases different initial seeds should be used where the same polynomial is being reused." to "For 8-lane use cases, see 162.8.11.1."

4. Make the default seeds in Table 162-10a the same as in the ETC spec (seeds 4 to 7 are the same as seeds 0 to 3).

ETC say "it is recommended to ensure that physically adjacent lanes do not use the same polynomial". Recommend this.

6. Also, suggest that when there are more lanes than polynomials to use, significant correlation between any lanes can be avoided by a combination of seed and timing offset. Leave it to the implementer to choose how to do this.

Proposed Response Response Status W

PROPOSED ACCEPT IN PRINCIPLE.

Replace "The polynomial identifier for each lane should be unique; two physically adjacent lanes having the same identifier could impair operation of the PMD control function. The default identifiers are (binary); for lane 0, 00; for lane 1, 01; for lane 2, 10; for lane 3, 11; for lane 4, 00; for lane 5, 01; for lane 6, 10; for lane 7, 11. For 8-lane use cases different initial seeds should be used where the same polynomial is being reused."

"The polynomial identifier for adjacent lanes should be unique to avoid a risk of impairment of the PMD control function. If the same polynomial identifier is used for multiple lanes, different initial seeds should be used for each of those lanes. The default identifiers are (binary): for lane 0, 00; for lane 1, 01; for lane 2, 10; for lane 3, 11; for lane 4, 00; for lane 5, 01; for lane 6, 10; for lane 7, 11."

The adopted baseline clearly states what the default seeds in Table 162-10a should be (see: https://www.leee802.org/3/df/public/22_05/lusted_3df_01a_2209.pdf). A user would be able to change the default values so that the seeds for lanes 4 to 7 match 0 to 3 by writing appropriate seed values to registers 1.1450 through 1.1457. Therefore it is not appropriate to change Table 162-10a. See also the response to comment #139

45.2.1.168 PMD training pattern lanes 0 through 73 (Register 1.1450 through 1.14573)

The assignment of bits in the PMD training pattern lane 0 register is shown in Table 45–133. The assignment of bits in the PMD training pattern lanes 1 through 73 registers are defined similarly to lane 0. Register 1.1450 controls the PMD training pattern for PMD lane 0; register 1.1451 controls the PMD training pattern for PMD lane 1; etc.

Register bits 12:11 contain a 2-bit identifier that selects the polynomial used for training in the particular PMD lane according to the definition in 92.7.12 and 136.8.11.1.3. The polynomial identifier for each lane should be unique to avoid a risk of impairment of the PMD control function. If the same polynomial identifier is used for multiple lanes, different initial seeds should be used for each of those lanes; two physically adjacent lanes having the same identifier could impair operation of the PMD control function. The default identifiers are (binary): for lane 0, 00; for lane 1, 01; for lane 2, 10; for lane 3, 11; for lane 4, 00; for lane 5, 01; for lane 6, 10; for lane 7, 11. For 8-lane use cases different initial seeds should be used where the same polynomial is being reused.

Clause 172 (Kapil)

PCS functions (part 1) Comment #47

C/ 172	SC 172.2.1	P 163	L 38	# 47
Huber, Tom		Nokia		
Comment Ty	pe T	Comment Status D		pcs functions

There is some repetition between the paragraph about the PCS Synchronization process and the paragraph about the PCS Receive process in terms of aligning, reordering, and deskewing. Per the state diagrams, the PCS synchronization process ensures that all the lanes are aligned and deskewed, and the receive process deals with deocding the 66b characters.

SuggestedRemedy

Add a sentence to the end of the penultimate paragraph: "When all 32 lanes are aligned and deskewed, and reordered, the align_status flag is set to indicate that the PCS has obtained alignment."

Revise the first two sentences of the final paragraph as follows: "The PCS Receive process separates the reordered PCS lanes into two sets of 16 PCs lanes..."

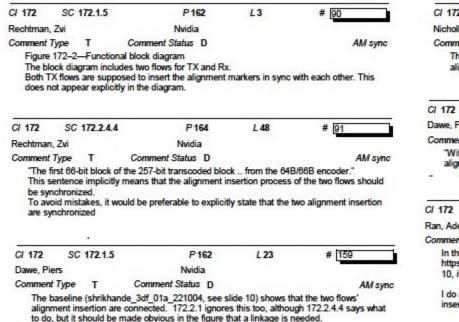
Proposed Response Response Status W

PROPOSED ACCEPT IN PRINCIPLE.

Implement the suggested remedy with editorial license.

PCS functions (part 2) Comment #47 - proposed changes

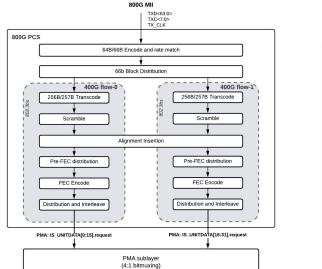
In 172.2.1, the last two paragraphs are edited per the comment

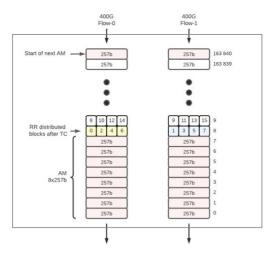

The PCS Synchronization process continuously monitors PMA:IS_SIGNAL.indication(SIGNAL_OK). When SIGNAL_OK indicates OK, then the PCS synchronization process accepts data units via the PMA:IS_UNITDATA_0:31.indication primitive. It attains alignment marker lock based on the common marker (CM) portion that is periodically transmitted on every PCS lane. After alignment markers are found on all PCS lanes, the individual PCS lanes are identified using the unique marker portion (UM) and then reordered, and the align_status flag is set. Note that a particular transmit PCS lane can be received on any receive lane of the service interface due to the skew and multiplexing that occurs in the path.

The PCS Receive process aligns, deskews, reorders the 32 PCS lanes, and sets the align_status flag to indicate whether the PCS has obtained alignment. The reordered PCS lanes are separated into two sets of 16 PCS lanes belonging to each flow. The PCS Receive process separates the reordered PCS lanes into two sets of 16 PCS lanes belonging to each flow. Within a flow, the data from the 16 PCS lanes is de-interleaved, processed by the FEC decoder, and re-interleaved on a 10-bit basis to form a single data stream. The alignment markers are removed, the data is descrambled and reverse transcoded back to 66-bit blocks. A 66-bit block collection function merges the 66-bit blocks from the two flows in a round-robin fashion into a single stream of blocks that are then 64B/66B decoded.

AM Sync (part 1) Comment #90

C/ 172	SC	172.1.5	P 1	62	L 3	#	90	
Rechtman,	Zvi		Nvidia	а				
Comment T	ype	т	Comment Status	D				AM sync
The blo Both TX	ck dia (flow	agram inclu /s are suppo	al block diagram des two flows for TX osed to insert the alig ly in the diagram.		kers in sy	ync with each	h othe	ər. This
SuggestedF	Reme	dy						
Add arre Possible	ow w e imp	vovement #	synchronization b		•			
Proposed R	espo	nse	Response Status	w				
The inse the 66-b The inte sychron impleme There w	ertion bit blo ent of izatio entation	the third buy the third buy on of the AM ion. an editoria	N PRINCIPLE. the AM pattern in b prior to the block dis ullet in the exception f insertion between presentation propost in 172.2.4.4 to ma	stribution. I list in 172.2 the two flows osing an upda	.4.4 is to s, withou ate to the	enforce the t defining a s e text used in	pecifi	ic


AM Sync (part 2) Comments related to #90: [91, 159, 108, 180, 9, 60]


CI 172	SC	172.2.4.4	P 164	L 47	# 108	_
Nicholl, St	nawn		AMD			
Comment	Туре	TR	Comment Status D		AM	sy
			he first 66-bit block of the 2 ay be open to misinterpreta		l block following the	
CI 172	SC	172.2.1	P 163	L 21	# [180	-
Dawe, Piers	5		Nvidia		1	7
Comment T	ype	Т	Comment Status D		AM s	m
alignme	ent ma		eriodically added to the data			
alignme	ent ma	rkers are pe	eriodically added to the data		# 10	
alignme	ent ma			L 51	# [9	
alignme Ci 172 Ran, Adee Comment Ty	SC 1	172.2.4.4 TR	Priodically added to the data P 164		# [<u>9</u>	nc
alignme Cl 172 Ran, Adee Comment Ty In the ba https://w 10, it is I do not	SC 1 ype aseline ww.ie written	TR Proposal ee802.org/3 that "AM in	P 164 Cisco	L 51 shrikhande_3df_ ne two flows*.	AM sy 01a_221004.pdf, slid	
alignme Cl 172 Ran, Adee Comment Ty In the ba https://w 10, it is I do not	SC 1 pe aseline ww.ie written see th AM b	TR Proposal ee802.org/3 that "AM in	P 164 Cisco Comment Status D Vdf/public/22_10/22_1004/stertion is aligned across there in clause 172. The text	L 51 shrikhande_3df_ ne two flows*.	AM sy 01a_221004.pdf, slid	
alignme C/ 172 Ran, Adee Comment Ty In the bz https://w 10, it is I do not inserting	SC 1 ype aseline www.ie written see th y AM b	TR Proposal ee802.org/3 that "AM in wat requirem plocks indep	P 164 P 164 Cisco Comment Status D Vdf/public/22_10/22_1004/ isertion is aligned across the isertion is aligned across the isertion is aligned across the isertion is aligned across the isertion is aligned across the isertio	L 51 shrikhande_3df_1 he two flows*. in 172.2.4.4 doe	AM sy 01a_221004.pdf, slid s not preclude	

AM Sync (part 3) AM insertion in the Baseline

Baseline Proposal Diagram Slide 12 (shrikhande_3df_01a_221004.pdf)

Baseline Proposal Diagram Slide 13 (shrikhande_3df_01a_221004.pdf)

The transmit diagram in the baseline (slide 12) shows Alignment insertion as a single block across 2 flows.

The key information showing how the AM insertion is "synchronized" across the two flows is present in the figure on slide 13, which shows the two Alignment marker groups of flow 0 and flow 1 are followed by 66-bit blocks numbered (0,2,4,6) in flow 0 and (1,3,5,7) in flow 1.

Only stating that the AM insertion should be "synchronized" or showing a single AM insertion block is not sufficient.

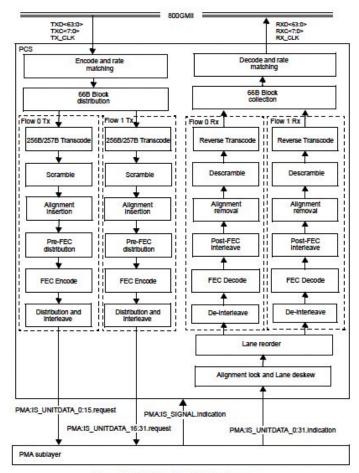
AM Sync (part 4) AM insertion in D1.0 172.2.4.4

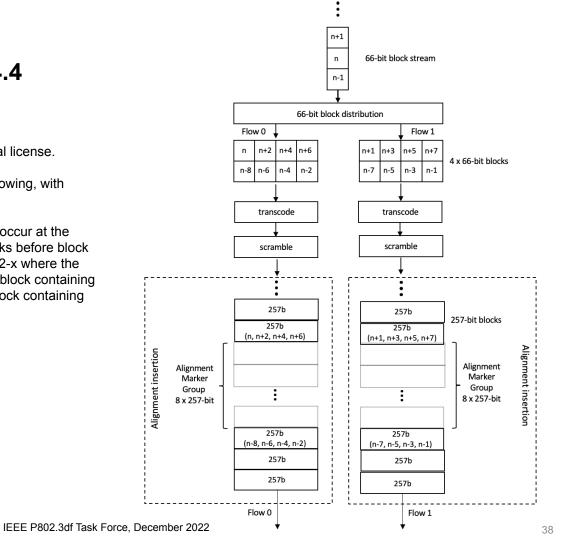
172.2.4.4 Alignment marker mapping and insertion

The alignment marker mapping and insertion in each flow is identical to the 400GBASE-R alignment marker and insertion function specified in 119.2.4.4 with the following exceptions:

-Alignment marker encoding values for flow 0 are specified in Table 172–1. -Alignment marker encoding values for flow 1 are specified in Table 172–2 and the variable x in 119.2.4.4.2 takes the values of PCS lane number minus 16. -The first 66-bit block of the 257-bit transcoded block following the alignment marker group in flow 1 shall be the 66-bit block that followed the first 66-bit block of the 257-bit transcoded block in flow 0 from the original 66-bit block stream from the 64B/66B encoder.

D1.0 uses the highlighted text in 172.2.4.4 to specify the AM insertion requirement shown in slide 13 of the baseline, without defining a specific implementation.



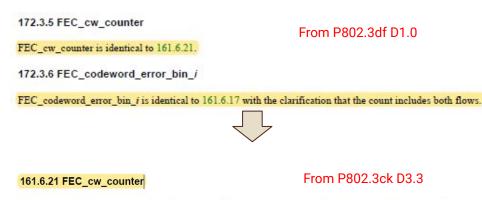

Figure 172–2—Functional block diagram

AM Sync (part 5) Proposed changes in 172.2.4.4

Include the following diagram in 172.2.4.4, with editorial license.

Change the 3rd exception bullet in 172.2.4.4 to the following, with editorial license.

"The alignment marker insertion within each flow shall occur at the same point relative to the original stream of 66-bit blocks before block distribution. This requirement is illustrated in Figure 172-x where the alignment marker group is inserted prior to the 257-bit block containing the 66-bit block "n" for flow 0 and prior to the 257-bit block containing the 66-bit block "n+1" for flow 1."



Clause 172: FEC bin counters (part 1) Comments 189, 4, 63, 64

C/ 172	SC 1	72.3.5	P1	73	L 31	# 189
Dawe, Pie	rs		Nvidia	a		1. A.
Comment	Туре	TR	Comment Status	D		fec counters
P PHY 400G,	ne shrikh /s 100GE which is	BASE-KR what the	_01a_221004, and	in 802.3 CR1) onl	sck it's for RS-FE y. It's not applic	Section 8) or the PCS C-Int (for 100GBASE- able to any 200G or to 172.3.6
Suggested	Remedy	,				
	ne-speed					atures from a feature is to any 800GBASE-R
Proposed	Respons	e	Response Status	W		
		er was im		1.0 altho	ough it is not in C	lause 119 and was not
wheth	er it is op		l baseline. Therefor mandatory. n.	e we ne	ed to decide whe	ther to keep it and
wheth	er it is op sk force o	tional or	mandatory.		L 31	ther to keep it and # 4
wheth For ta	er it is op sk force SC 1	tional or discussio	mandatory. n.	73		
Wheth For tas	er it is op sk force SC 1 e	discussio	mandatory. n. P1	73		
C/ 172 C/ 172 Ran, Ade Comment FEC_ shoul	SC 1 SC 1 Type cw_cour d be stat	T72.3.5 ER hter is defied, as in o	mandatory. n. P 1 Cisco <i>Comment Status</i> ned as optional in 1 clause 161.	73 D 61.6.21	L 31 Assuming it is o	# [4 fec counters ptional here too, it
C/ 172 C/ 172 Ran, Ade Comment FEC_ shoul	SC 1 SC 1 Type cw_cour d be stat	T72.3.5 ER hter is defied, as in o	mandatory. n. P 1 Cisco <i>Comment Status</i> ned as optional in 1	73 D 61.6.21	L 31 Assuming it is o	# [4 fec counters ptional here too, it
C/ 172 Ran, Ader Comment FEC shoul Other	SC 1 SC 1 B Type cw_cour d be stat wise, sta	IT2.3.5 ER ter is defied, as in the that it i	P 1 P 1 Cisco <i>Comment Status</i> ned as optional in 1 clause 161.	73 D 61.6.21.	L 31 Assuming it is o	# [4 fec counters ptional here too, it
wheth For ta: C/ 172 Ran, Ade Comment FEC shoul Other Simila	SC 1 SC 1 Type cw_cour d be stat wise, sta	172.3.5 ER hter is defied, as in o te that it i 72.3.6 FE	P 1 Cisco Comment Status ned as optional in 1 clause 161. s not optional for thi	73 D 61.6.21.	L 31 Assuming it is o	# [4 fec counters ptional here too, it
Cl 172 Cl 172 Ran, Adec Comment FEC_ shoul Other Simila Suggeste	er it is op sk force SC 1 e Type cw_cour d be stat wise, sta arly for 11 dRemedy	IT2.3.5 ER ter is defied, as in output te that it it T2.3.6 FE	P 1 Cisco Comment Status ned as optional in 1 clause 161. s not optional for thi	73 D 61.6.21. is PCS (bin_i.	L 31 Assuming it is o but I assume it's	# [4 fec counters ptional here too, it
Cl 172 Cl 172 Ran, Adec Comment FEC_ shoul Other Simila Suggeste	SC 1 sk force SC 1 e Type cw_cour d be stat wise, sta arly for 1 dRemedy (optional	IT2.3.5 ER Iter is defi ed, as in o the that it i 72.3.6 FE Y)* to the s	P 1 P 1 Cisco <i>Comment Status</i> ined as optional in 1 clause 161. s not optional for thi C_codeword_error_	73 D 61.6.21. Is PCS (bin_i. 2.3.5 and	L 31 Assuming it is o but I assume it's	# [4 fec counters ptional here too, it

Comment #189 indicates that although these counters were added in Clause 161 in 3ck, they were not explicitly called out in the adopted 3df PCS baseline.

Comment #4 states that it is not clear whether the counters should be optional (as in clause 161) or mandatory.

FEC_cw_counter is an optional 48-bit counter that counts once for each FEC codeword received when fec_align_status is true. This variable is mapped to the registers defined in 45.2.1.120a (1.207 to 1.209).

161.6.17 FEC_codeword_error_bin_i

FEC_codeword_error_bin_*i*, where *i*=1 to 15, are optional 32-bit counters. While fcc_align_status is true, for each codeword received with exactly *i* correctable 10-bit symbol errors FEC_codeword_error_bin_*i* is incremented. For example, if a codeword has exactly 5 errored 10-bit symbols, then fcc_codeword_error_bin_5 is incremented. These variables are mapped to the registers defined in 45.2.1.131a (1.340 to 1.369).

5

F

Clause 172: FEC bin counters (part 2) Comments 189, 4, 63, 64

	SC	172.3.5	P 173	L 32	2	# 63	
Slavick, Je	ff		Broadco	m			
Comment	Туре	т	Comment Status D			fec cou	inters
The C	W cou	nter is a	RS-FEC sublayer counte	r in MDIO space	e, not a PCS	counter.	
Suggested	Reme	dy					
			of 45.2.1.120a (802.3ck) 1 references with 172.	into a set of P	CS registers	(45.2.3.###)	and
			2.2.3.5 with the same tex the newly created MDIO		1 updating th	e MDIO regis	ter
Update	e Table	e 172-4 to	point to the newly creat	ed MDIO regis	ters.		
Proposed I	Respo	nse	Response Status W	1			
		172.3.6	P 173	L 32	# 64		
CI 172	SC			- 52	~ 04		
C/ 172	Carl State	1/2.3.6	Broadcom		201		
Slavick, Je	eff		Broadcom Comment Status X		fec	counters	
Slavick, Jo Comment The F	eff Type	T deword_er	Broadcom Comment Status X ror_bin_i is a RS-FEC subla	ver set of counte		counters ice, not	
Slavick, Jo Comment The F	eff Type EC_co counter	T deword_er s.	Comment Status X	ver set of counte			
Slavick, Je Comment The F PCS of Suggestee Copy	eff Type EC_co counter dReme of the c	T deword_er s. dy definition o	Comment Status X		rs in MDIO spa	ce, not	
Slavick, Ju Comment The F PCS of Suggested Copy replac Repla	eff Type EC_co counter dReme of the c ce the C	T deword_er s. dy definition o Clause 161 text in 172	Comment Status X ror_bin_i is a RS-FEC subla	a set of PCS reg n 161.6.17 upda	rs in MDIO spa isters (45.2.3.#	ice, not ##) and	
Slavick, Ju Comment The F PCS o Suggester Copy replac Repla refere	eff Type EC_co counter dReme of the o ce the C ace the ences to	T deword_er s. dy definition o Clause 161 text in 172 o point to th	Comment Status X ror_bin_i is a RS-FEC subla (45.2.1.131a (802.3ck) into references with 172. 2.3.6 with the same text from	a set of PCS reg n 161.6.17 upda ters.	rs in MDIO spa isters (45.2.3.#	ice, not ##) and	
Slavick, Ju Comment The F PCS o Suggester Copy replac Repla refere	eff Type EC_co counter of the co the C ace the ences to te Table	T deword_er s. dy definition o Clause 161 text in 172 o point to th e 172-4 to	Comment Status X ror_bin_i is a RS-FEC subla f 45.2.1.131a (802.3ck) into references with 172. .2.3.6 with the same text from the newly created MDIO regis	a set of PCS reg n 161.6.17 upda ters.	rs in MDIO spa isters (45.2.3.#	ice, not ##) and	

Comments #63 and #64 indicate that if these counters are to be included in the draft, they need to be mapped to a set of PCS MDIO registers and not a set of RS-FEC MDIO registers (as they are in the current draft, and likely a hold over from the reference to Clause 161 from P802.3ck).

Clause 172: FEC bin counters (part 3) Comments 189, 4, 63, 64

FEC bin counter background

- Added in 3ck for Clause 161 (RS-FEC-Int sublayer)
 - https://www.ieee802.org/3/ck/public/20_03/gustlin_3ck_0 1_0320.pdf
- Comprises 15 x 32 bit counters
 - ➤ # of codewords with 1 symbol error
 - > # of code words with 2 symbol errors, etc
- These counters are valuable because:
 - Indicate margin to FEC cliff
 - > Provide insight into error statistics (random or burst)
- Optional in Clause 161 as feature added late in the day
- Although not specifically included in Clause 119, many implementations include these counters (for reasons cited above)

Symbol Errors per Codeword

No. of Symbols	Count	Percentage
0	4,496,897,584,919	99.92411
1	3,410,587,388	0.07578
2	4,316,290	0.00009
3	11,000	0.00000
4	211	0.00000
5	71	0.00000
6	33	0.00000
7	17	0.00000
8	19	0.00000
9	15	0.00000
10	8	0.00000
11	7	0.00000
12	8	0.00000
13	2	0.00000
14	5	0.00000
15	0	
>= 16	5	0.00000

Figure 4: Classic errored symbol per codeword view of a 400GE link

Source:

https://www.viavisolutions.com/en-us/literature/test-and-validate-fec -implementations-white-papers-books-en.pdf

Clause 172: FEC bin counters (part 4) Comments 189, 4, 63, 64

Proposed straw polls

Straw poll #xxx

I support keeping the FEC bin counters (FEC_codeword_error_bin_i) and FEC cw counter (FEC_cw_counter) currently defined in 172.3.6 and 172.3.5 respectively.

Y: N:

Straw poll #xxx

I support the FEC bin counters (FEC_codeword_error_bin_i) and FEC cw counter (FEC_cw_counter) currently defined in 172.3.6 and 172.3.5 respectively, being:

A: Mandatory B: Optional

C: Need more information

Clause 173 (Gary)

PMA service interface clarifications (in support of comments 29, 162, 196 and 197)

Gary Nicholl - Cisco Matt Brown, Xiang He - Huawei Jeff Slavick - Broadcom

Introduction

- Several comments were received related to the PMA service interface
- These comments were primarily related to the IS_SIGNAL.indication primitive and the fact that:
 - this signal is not supported over an 800GAUI-8 interface
 - this signal is not received by a PHY 800GXS
- The editorial team also noted that the 800GXS service interfaces are not explicitly defined in Clause 171
 - simple reference to the PCS clause (Clause 172) is not really sufficient, especially for the "PHY 800GXS"
 - need to define the "DTE 800GXS" and "PHY 800GXS" service interfaces in Clause 171 (i.e. PHY 800GXS service interface receives IS_SIGNAL.request and does not generate IS_SIGNAL.indication)
- The editorial team also found that Figure 169-3 needs to up updated related to the comments identified above.

Related Comments

C/ 173	SC	173.4	P 182	L 38	# 196	
Nicholl, G	агу		Cisco Syster	ns		
Comment	Туре	Т	Comment Status D			PMA SI
(AUI i		ble to tran	IA) there should be no PMA: isfer an out of band status s			
The s	ame co	omment a	pplies to the 8:8 PMA in Figu	re 173-5.		
Suggestee	Reme	dy				
	ve the 173-5		SIGNAL.indication signal and	I the "SIL" block	from Figure 173-	4 and
Proposed	Respo	onse	Response Status W			
The e addre A pres	ditors i ss it pr sentati	noted this operly. on will be	IN PRINCIPLE. error during the implementat provided for task force discu	ssion.		late to
CI 173	SC 1	73.4	P 180	L 20	# 162	
Dawe, Piers			Nvidia			
Comment T	ype	Т	Comment Status D		PI	MA SI
			PMA (8 lanes) connects with 00GAUI-8).	either a PMD or	a physically	
SuggestedF	emedy	/				
			PMA (8 lanes) either connect 0GAUI-8) connecting to ano			

another PMA. Similarly twice more.

Proposed Response Response Status W

PROPOSED ACCEPT IN PRINCIPLE. Resolve using the response to comment #196.

C/ 173	SC 173.4	P1	81	L 40	# 197
Nicholl, Ga	ry	Cisco	System	IS	
Comment 7	ype E	Comment Status	D		PMA SI
		Need to make it clear if the connected over a physic			
Suggested	Remedy				
		-3/4/5 to make it clear if t connected over a phys			
Proposed P	Response	Response Status	w		
		EPT IN PRINCIPLE. response to comment #1	96.		

Cl 173 S	C 173.2	P 179	L 10	# 29
Bruckman, Leo	on	Huawei		
Comment Type	e T	Comment Status D		PMA SI
		e sublayer below the PMA is a SIGNAL indication as an inp		

receive a PHY_XS:IS_SIGNAL.indication as an input to the SIL". Figure 173-4 that describes this interface does include the PHY_XS:IS_SIGNAL.indication

SuggestedRemedy

Update Figure 173-4 according to text

Proposed Response Response Status W PROPOSED ACCEPT IN PRINCIPLE. Resolve using the response to comment #196.

PHY 800GXS service interface

- The editorial team noted that the highlighted text in 173.3 defines an additional service interface primitive for the PHY XS.
- This primitive is not mentioned anywhere else in the draft and is not included in any of the service interface diagrams.
- This should be defined in Clause 171, including a full description of the DTE 800GXS and PHY 800GXS service interfaces (rather than just being mentioned in 173.3)

173.3 Service interface below PMA

There are several different sublayers that may appear below a PMA, including the PMD, an extender sublayer, or another PMA. The variable *inst* represents whichever sublayer appears below the PMA (e.g., another PMA or PMD).

The sublayer below the PMA utilizes the inter-sublayer service interface defined in 169.3. The service interface primitives provided to the PMA are summarized as follows:

inst:IS_UNITDATA_i.request(tx_symbol)
inst:IS_UNITDATA_i.indication(rx_symbol)
inst:IS_SIGNAL_indication(SIGNAL_OK)

The service interface below the PMA uses 8 lanes.

For the 32:8 and 8:8 PMAs the *inst*.IS_UNITDATA_*i* primitives are defined for *i* = 0 to 7. Note that electrical and timing specifications of the service interface are defined if the interface is physically instantiated (e.g., 800GAUI-8), otherwise the service interface is specified only abstractly. The interface between the PMA and the sublayer below consists of 8 lanes for data transfer and a status indicating a good signal from the sublayer below the PMA (see Figure 173–3 and Figure 173–4).

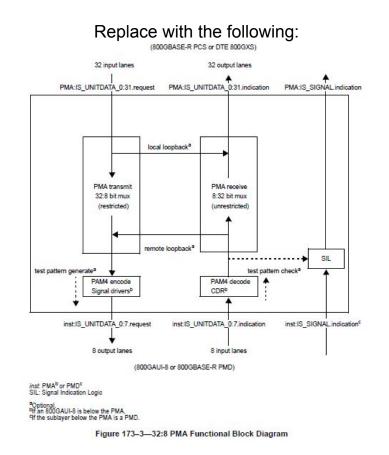
For the 8:32 PMA the *inst*:IS_UNITDATA_*i* primitives are defined for *i* = 0 to 32. The interface between the PMA and the sublayer below consists of 32 parallel bit streams (each at the nominal signaling rate of the PCSL) and a status indicating a good signal from the sublayer below the PMA (see Figure 173–3).

In the case where the sublayer below the PMA is a PHY 800GXS, there is an additional primitive:

PHY_XS:IS_SIGNAL.request(SIGNAL_OK)

The PHY_XS:IS_SIGNAL request primitive is generated through a set of SIL that reports signal health based on data being received on all of the input lanes from the sublayer above, buffers filled (if necessary) to accommodate Skew Variation, and symbols being sent to the PHY 800GXS on all of the output lanes. When these conditions are met, the SIGNAL_OK parameter sent to the PHY 800GXS via the PHY_XS:IS_SIGNAL request primitive has the value OK. Otherwise, the SIGNAL_OK primitive has the value FAIL.

173.4 Functions within the PMA


The 800GBASE-R PMA is based upon the 400GBASE-R PMA defined in Clause 120.

Three forms of the 800GBASE-R PMA are defined: 32:8, 8:32, and 8:8.

Figure 173-3 (32:8 PMA)

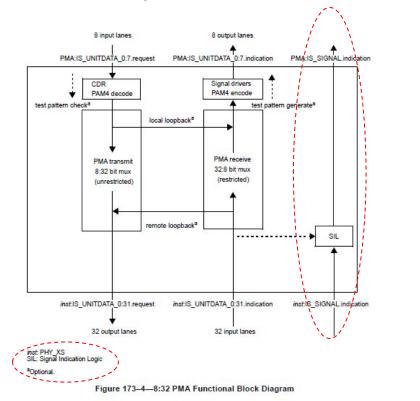

Figure in 802.3df D1.0:

Figure 173-4 (8:32 PMA)

Figure in 802.3df D1.0:

Replace with the following:

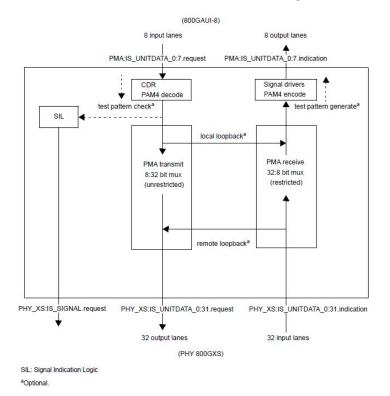
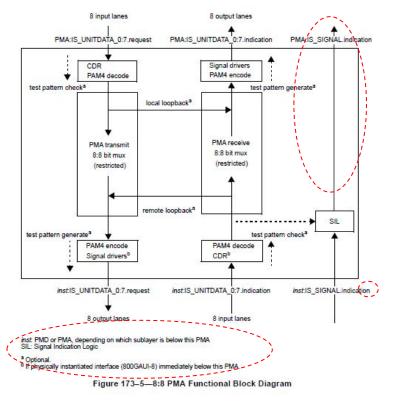



Figure 173-4-8:32 PMA Functional Block Diagram

Figure 173-5 (8:8 PMA)

Figure in 802.3df D1.0:

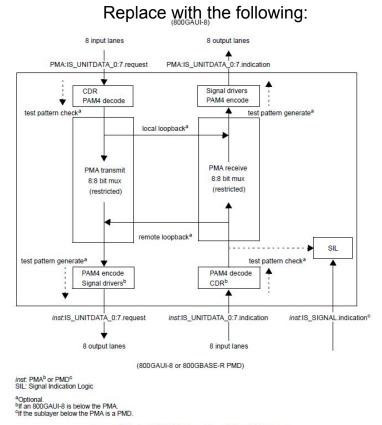


Figure 173-5-8:8 PMA Functional Block Diagram

DTE 800GXS (Clause 171)

- The DTE 800GXS functionality and service interface is not explicitly defined in Clause 171
- The functional diagram for the DTE XS would be identical to the PCS as shown in Figure 172-2 (with the exception that "PCS" should be labelled "DTE XS").
- The DTE 800GXS service interface is identical to the 800GBASE-R PCS service interface that is defined in Clause 172.

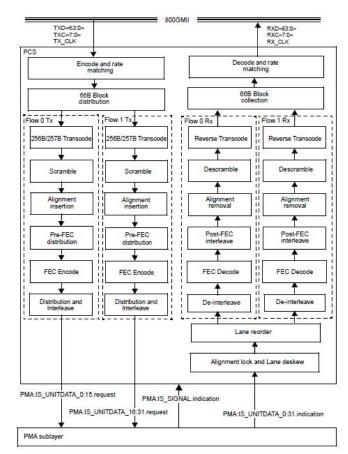
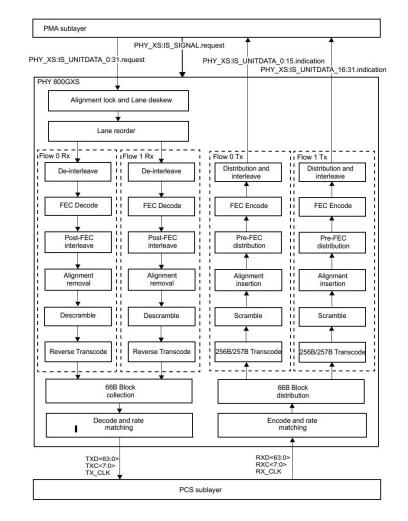
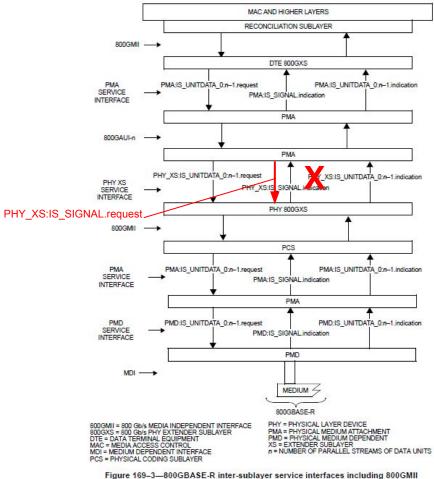



Figure 172-2—Functional block diagram


PHY 800GXS (Clause 171)

- The PHY 800GXS functionality and service interface is not explicitly defined in Clause 171.
- The functional block diagram for the PHY 800GXS is shown on this slide.
- The PHY 800GXS is essentially an upside down 800GBASE-R PCS, and as a result the service interface is somewhat different to the 800GBASE-R PCS service interface that is defined in Clause 172 (for example the service interface receives an IS_SIGNAL.request signal and rather than an IS_SIGNAL.indication signal)
- Clause 171 should be updated to show the PHY 800GXS functional block diagram and to define the PHY 800GXS service interface.

Figure 169-3

Update Figure 169-3 as shown.

Recommendation

- Update Figures 173-3/4/5 with the corresponding figures shown on previous slides, and update any associated text accordingly.
- Update Clause 171 according to previous slides, add DTE 800GXS and PHY 800GXS service interface definitions, and update any associated text accordingly.
- Update Figure 169-3 based on the figure shown in previous slide and update any associated text accordingly.

Clause 173 CDR (bucket1), Comment # 165

173.4.1 Per input-lane clock and data recovery (CDR)

If the interface between the PMA client and the PMA is physically instantiated as 800GAUI-8, the PMA shall meet the electrical and timing specifications <u>as specified</u> in Annex 120F or Annex 120G as appropriate<u>at the PMA service interface</u>.

If the interface between the sublayer below the PMA and the PMA is physically instantiated as 800GAUI-8, the PMA shall meet the electrical and timing specifications at the service interface below the PMA as specified in Annex 120F or Annex 120G as appropriate at the service interface below the PMA.

Clause 124 (Peter)

Reflections and return loss Comments 105, 131

C/ 124	SC	124.11.1	PT	9	L 20	# 105	-
Nicholl, G	ary		Cisco	Syste	ms	37	
Comment Type T		Т	Comment Status	D		1	reflections
DR4-2 2/DR8	2/DR8-2 3-2 appe	? Don't thears to have	d the optical return ley both use the same been copied over connector (LC versu	ne MP from 1	O connector. The 00GBASE-FR1 in 1	alue of 25dB	for DR4-
Suggested	dRemed	ly					
This is	s more o	of a questic	on for clarification.				
Proposed	Respon	se	Response Status	w			
			N PRINCIPLE. nse to comment #1	32.			
C/ 124	SC	2 124.11.1	P	79	L 20	# 13	1
Dawe, P	iers		Nvid	lia			
Commer	nt Type	E	Comment Statu	s D			reflection
not i shou	in the ba uld not fi	aseline, but ollow FR1,	ng characteristics for are the same as for as the optical return ances is different.	r 100G	BASE-FR1. The o	optical return	loss
Suggest	edReme	edy					
			n loss as necessary e of discrete reflect			adopted opti	cal return
Propose	d Respo	onse	Response Status	w			
			IN PRINCIPLE.	132.			

124.11.1 Optical fiber cable

Change Table 124-11 as follows:

Table 124-11—Fiber optic cabling (channel) characteristics

Description	400GBASE-DR4 800GBASE-DR8	400GBASE-DR4-2 800GBASE-DR8-2	Unit
Operating distance (max)	500	2000	m
Channel insertion loss ^{a,b} (max)	3	4	dB
Channel insertion loss (min)	0	<u>o</u>	dB
Positive dispersion ^b (max)	0.8	3.2	ps/nm
Negative dispersion ^b (min)	-0.93	<u>-3.7</u>	ps/nm
DGD_max ^c	2.24	2.3	ps
Optical return loss (min)	37	25	dB

These channel insertion loss values include cable, connectors, and splices.

Over the wavelength range 1304.5 nm to 1317.5 nm.

Differential Group Delay (DGD) is the time difference at reception between the fractions of a pulse that were transmitted in the two principal states of polarization of an optical signal. DGD_max is the maximum differential group delay that the system is required to tolerate.

The comments are totally right. There should be no difference between DR4/DR8 on one hand and DR4-2/DR8-2 on the other hand. The usage of 100GBASE-FR1 as a reference point was incorrect because of presence of a single fiber instead of a ribbon fiber with 4/8 fibers in one direction.

Thus, in Table-124-11 change 25 dB for Optical return loss (min) to 37 dB.

Reflections and return loss Comments 132, 133

C/ 124	SC	124.11.2.2	P7	9	L 43	# 132	
Dawe, Piers			Nvidi	a			
Comment Ty		т	Comment Status	-		reflect	tions
Part of the		aselines is i	missing. Both base	lines have	a table of disc	rete reflectances	
SuggestedR	eme	dy					
Add this	(the	se) as a ne	w column(s) in Tab	le 124-9			
Proposed Re	spor	nse	Response Status	W			
			N PRINCIPLE. ovided for task forc	e discussi	on.		

C/ 124	SC 124.11.2.	.2 P 79	L 43	# 133
Dawe, Piers		Nvidia		
Comment Ty	De F	Comment Status D		reflections

It seems odd that the table of discrete reflectances above 55 dB for 800GBASE-DR8 in the baseline is not the same as the existing table for 400GBASE-DR4, but it is the same as 400GBASE-DR4-2 and 800GBASE-DR8-2.

SuggestedRemedy

Reconcile the tables for 400GBASE-DR4 and 800GBASE-DR8

Proposed Response Response Status W

PROPOSED ACCEPT IN PRINCIPLE. Resolve using the response to comment #132.

124.11.2.1 Connection insertion loss

Change 124.11.2.1 as follows:

The-For 400GBASE-DR4 and 800GBASE-DR8 the maximum link distance is based on an allocation of 2.75 dB total connection and splice loss. For example, this allocation supports five connections with an average insertion loss per connection of 0.5 dB. Connections with different loss characteristics may be used provided the requirements of Table 124–11 are met.

For 400GBASE-DR4-2 and 800GBASE-DR8-2 the maximum link distance is based on an allocation of 3 dB total connection and splice loss. For example, this allocation supports six connections with an average insertion loss per connection of 0.5 dB. Connections with different loss characteristics may be used provided the requirements of Table 124-11 are met.

The comments are totally right. There should be no difference between DR4/DR8 on one hand and DR4-2/DR8-2 on the other hand. The usage of 100GBASE-FR1 as a reference point was incorrect. However that has already been taken into account.

Table 124-13 in the in-force Clause 124 has not been modified (as such not shown in P802.3-df D1.0) and is therefore valid for all 4 DR PMD types. Therefore the proposed should be "reject" because no changes to the draft are require.

124.11.2.2 Maximum discrete reflectance

The maximum value for each discrete reflectance shall be less than or equal to the value shown in Table 124–13 corresponding to the number of discrete reflectances above -55 dB within the channel. For numbers of discrete reflectances in between two numbers shown in the table, the lower of the two corresponding maximum discrete reflectance values applies.

Table 124-13-Maximum value of each discrete reflectance

Number of discrete reflectances above –55 dB	Maximum value for each discrete reflectance
1	-37 dB
2	-42 dB
4	-45 dB
6	-47 dB
8	-48 dB
10	-49 dB

IEEE P802.3df Task Force. December 2022

From IEEE Std 802.3-2022

(not amended in 802.3df)