# Lane muxing constraints for 800GBASE-R PMA

(in support of comment #6, and pertaining to comments #166, #167)

Adee Ran, Cisco

## Support

- Xiang He, Huawei
- Hao Ren, Huawei
- Ali Ghiasi, Ghiasi Quantum

## Restricted PCS lane muxing by the PMA



#### Example bitmuxing that meets new proposal

Below, codewords of flow 0 are denoted A/B, those of flow 1 are denoted C/D

## This was implemented in D1.0 as part of the PMA sublayer, Clause 173:

#### 173.4.2.1 32:8 PMA bit-level multiplexing

In the transmit direction, the function is performed among the PCSLs received from the PMA client via the PMA:IS\_UNITDATA\_*i*.request primitives (for PMA client lanes i = 0 to 31) with the result sent to the service interface below the PMA using the *inst*:IS\_UNITDATA\_*i*.request primitives (for service interface lanes i = 0 to 7), referencing the functional block diagram shown in Figure 173–3. The bit-level multiplexing function is identical to that specified in 120.5.2, with the following exceptions:

— The number of PCSLs is 32.

— The multiplexing function has an additional constraint that each of the 8 output lanes contain two unique PCSLs from PMA client lanes i = 0 to 15 and two unique PCSLs from PMA client lanes i = 16 to 31

- The purpose of the constraint is to have bits from all four codewords on each PMA lane
  - But... there is more than one way to do it
- Comments #166, #167 suggest that this constraint become only a recommendation
- Below I compare three options A, B, and X

# Option A (constrained muxing)

Specific example of muxing lanes per the diagram in slide 3

| UI\Lane | 0      | 1      | 2        | 3        | 4        | 5        | 6        | 7        |
|---------|--------|--------|----------|----------|----------|----------|----------|----------|
| 22      | B81A81 | B91A91 | B101A101 | B111A111 | B121A121 | B131A131 | B141A141 | B151A151 |
| 21      | D80C80 | D90C90 | D100C100 | D110C110 | D120C120 | D130C130 | D140C140 | D150C150 |
| 20      | B80A80 | B90A90 | B100A100 | B110A110 | B120A120 | B130A130 | B140A140 | B150A150 |
| 19      | C9D9   | C19D19 | C29D29   | C39D39   | C49D49   | C59D59   | C69D69   | C79D79   |
| 18      | A9B9   | A19B19 | A29B29   | A39B39   | A49B49   | A59B59   | A69B69   | A79B79   |
| 17      | C8D8   | C18D18 | C28D28   | C38D38   | C48D48   | C58D58   | C68D68   | C78D78   |
| 16      | A8B8   | A18B18 | A28B28   | A38B38   | A48B48   | A58B58   | A68B68   | A78B78   |
| 15      | C7D7   | C17D17 | C27D27   | C37D37   | C47D47   | C57D57   | C67D67   | C77D77   |
| 14      | A7B7   | A17B17 | A27B27   | A37B37   | A47B47   | A57B57   | A67B67   | A77B77   |
| 13      | C6D6   | C16D16 | C26D26   | C36D36   | C46D46   | C56D56   | C66D66   | C76D76   |
| 12      | A6B6   | A16B16 | A26B26   | A36B36   | A46B46   | A56B56   | A66B66   | A76B76   |
| 11      | C5D5   | C15D15 | C25D25   | C35D35   | C45D45   | C55D55   | C65D65   | C75D75   |
| 10      | A5B5   | A15B15 | A25B25   | A35B35   | A45B45   | A55B55   | A65B65   | A75B75   |
| 9       | C4D4   | C14D14 | C24D24   | C34D34   | C44D44   | C54D54   | C64D64   | C74D74   |
| 8       | A4B4   | A14B14 | A24B24   | A34B34   | A44B44   | A54B54   | A64B64   | A74B74   |
| 7       | C3D3   | C13D13 | C23D23   | C33D33   | C43D43   | C53D53   | C63D63   | C73D73   |
| 6       | A3B3   | A13B13 | A23B23   | A33B33   | A43B43   | A53B53   | A63B63   | A73B73   |
| 5       | C2D2   | C12D12 | C22D22   | C32D32   | C42D42   | C52D52   | C62D62   | C72D72   |
| 4       | A2B2   | A12B12 | A22B22   | A32B32   | A42B42   | A52B52   | A62B62   | A72B72   |
| 3       | C1D1   | C11D11 | C21D21   | C31D31   | C41D41   | C51D51   | C61D61   | C71D71   |
| 2       | A1B1   | A11B11 | A21B21   | A31B31   | A41B41   | A51B51   | A61B61   | A71B71   |
| 1       | C0D0   | C10D10 | C20D20   | C30D30   | C40D40   | C50D50   | C60D60   | C70D70   |
| 0       | A0B0   | A10B10 | A20B20   | A30B30   | A40B40   | A50B50   | A60B60   | A70B70   |



PCS checkerboard symbol pattern

Each PAM4 symbol contains two bits from the same flow (either flow 0 – with codewords A and B, or flow 1 – with codewords C and D)

Consecutive PAM4 symbol are from alternate flows

This muxing adheres to the constraint

Combined with the checkerboard pattern, this muxing allocates LSBs and MSBs of the PAM4 symbols equally among the four codewords

# Option B (constrained muxing, alternative)

Another example of muxing lanes per the diagram in slide 3

| UI\Lane | 0            | 1       | 2         | 3        | 4        | 5                    | 6        | 7                    |
|---------|--------------|---------|-----------|----------|----------|----------------------|----------|----------------------|
| 22      | B81D81       | B91 D91 | B101 D101 | B111D111 | B121D121 | B131D131             | B141D141 | B151 D151            |
| 21      | A80C80       | A90 C90 | A100C100  | A110C110 | A120C120 | A130C130             | A140C140 | A150C150             |
| 20      | B80 D80      | 890 D90 | B100 D100 | B110D110 | B120D120 | B130D130             | B140D140 | B150 D150            |
| 19      | 89 D9        | B19 D19 | B29 D29   | B39 D39  | B49D49   | B59 D59              | B69 D69  | B79 D79              |
| 18      | A9 C9        | A19 C19 | A29C29    | A39C39   | A49C49   | A59C59               | A69 C69  | A79 C79              |
| 17      | B8D8         | B18 D18 | B28D28    | B38 D38  | B48D48   | B58 D58              | B68 D68  | <mark>B78</mark> D78 |
| 16      | A8 C8        | A18C18  | A28C28    | A38C38   | A48C48   | A58C58               | A68 C68  | A78C78               |
| 15      | <b>B7</b> D7 | B17 D17 | B27 D27   | B37 D37  | B47 D47  | <mark>B57</mark> D57 | B67 D67  | B77 D77              |
| 14      | A7C7         | A17 C17 | A27C27    | A37C37   | A47C47   | A57 C57              | A67 C67  | A77 C77              |
| 13      | 86 D6        | B16 D16 | B26 D26   | B36 D36  | B46 D46  | <b>B56</b> D56       | 866 D66  | <mark>B76</mark> D76 |
| 12      | A6C6         | A16 C16 | A26C26    | A36C36   | A46C46   | A56C56               | A66 C66  | A76C76               |
| 11      | <b>B5</b> D5 | B15 D15 | B25 D25   | B35 D35  | B45 D45  | B55 D55              | B65 D65  | B75 D75              |
| 10      | A5 C5        | A15 C15 | A25 C25   | A35C35   | A45C45   | A55 C55              | A65 C65  | A75 C75              |
| 9       | B4 D4        | B14 D14 | B24 D24   | B34 D34  | B44 D44  | <mark>B54</mark> D54 | B64 D64  | <mark>B74</mark> D74 |
| 8       | A4 C4        | A14 C14 | A24 C24   | A34C34   | A44C44   | A54C54               | A64 C64  | A74 C74              |
| 7       | <b>B3</b> D3 | B13 D13 | B23 D23   | B33 D33  | B43D43   | B53 D53              | B63 D63  | B73 D73              |
| 6       | A3 C3        | A13 C13 | A23C23    | A33C33   | A43C43   | A53C53               | A63 C63  | A73C73               |
| 5       | B2 D2        | B12 D12 | B22 D22   | B32 D32  | B42 D42  | B52 D52              | B62 D62  | B72 D72              |
| 4       | A2 C2        | A12 C12 | A22 C22   | A32C32   | A42C42   | A52C52               | A62 C62  | A72 C72              |
| 3       | <b>B1</b> D1 | B11 D11 | B21D21    | B31D31   | B41D41   | B51D51               | B61D61   | B71D71               |
| 2       | A1C1         | A11C11  | A21C21    | A31C31   | A41C41   | A51C51               | A61C61   | A71C71               |
| 1       | B0 D0        | B10 D10 | B20 D20   | B30 D30  | B40 D40  | 850 D50              | B60 D60  | 870 D70              |
| 0       | <b>A0</b> C0 | A10C10  | A20C20    | A30C30   | A40C40   | A50C50               | A60 C60  | A70C70               |



Each PAM4 symbol contains two bits <u>not</u> from the same

flow (in this example, one PAM4 symbol has AC and the other has BD; AD+BC also possible)

This muxing still adheres to the constraint

However, despite the checkerboard pattern, this always allocates MSBs to two of the codewords (here A and B) and LSBs to the other codewords (here C and D)

## 2/3 of random errors occur in the LSB

#### Burst error model 2

The second aspect of this table is that of the six possibilities giving bits in error, two have errors in the first bit while four have errors in the second bit.

| Correct level | Receive | ed level | Error pattern |          |  |
|---------------|---------|----------|---------------|----------|--|
|               | One up  | One down | One up        | One down |  |
| 3             | 3       | 2        | √,√           | √, ×     |  |
| 2             | 3       | 1        | √, ×          | ×, √     |  |
| 1             | 2       | 0        | ×, ✓          | √, ×     |  |
| 0             | 1       | 0        | √, ×          | √, √     |  |

The analysis in the remainder of this contribution therefore assumes that if a given symbol is in error, the probability of a bit error in the first bit is 1/3 and in the second bit is 2/3.

This means that, with option B:

- The two codewords that get the MSBs (A/B) have 2/3 of the average BER
- The two codewords that get the LSBs (C/D) have 4/3 of the average BER
- Uncorrectable errors occur more often in C and D
- Any uncorrectable error corrupts all four codewords

Note: if precoding is used, the decoding operation spreads errors equally across MSB and LSB, so this only applies to the non-precoded case

#### Source: anslow 3ck adhoc 01 072518

# FLR effect of option B with low error correlation (optics or C2M)

Factor of 34 (1.5 orders of magnitude) increase in FLR, or ~0.15 dB penalty



Reduction of 25% in pre-FEC BER is required



## Notes

- The FLR penalty is almost constant (1.5 order of magnitude) regardless of error correlation, so only shown at two values of *a* 
  - Higher values of *a* will likely cause precoding to be used anyway
- "Option B" does not exist in any 200G/400GBASE-R PHY or AUI
  - The FLR effect (×34) is worse than that of having 4 instead of 2 codewords (×2)
  - Existing links will have a higher FLR at 800G (with option B) than at 200G/400G
- "Option B" may be susceptible to the "low clock content" issue because the LSBs always come from the same flow (and thus the same scrambler), as in clause 119
  - In "Option A" the LSBs alternate between two flows, which seems to solve the issue (the probability of having correlated outputs from two separate scramblers is negligible).
- A PMA(8:8) should be prevented from permuting PCSLs such that "option A" at the input is converted to "option B" at the output.

## Suggested remedy (per comment #6)

#### 173.4.2.1 32:8 PMA bit-level multiplexing

Change the second list item as shown:

- The multiplexing function has an additional constraint that each of the 8 output lanes contain two unique PCSLs from PMA client lanes *i* = 0 to 15 encoded as one PAM4 symbol, and two unique PCSLs from PMA client lanes *i* = 16 to 31 encoded as the subsequent PAM4 symbol (see 173.4.7).

#### 173.4.2.2 8:32 PMA bit-level multiplexing

Change the second list item as shown:

- The multiplexing function has an additional constraint that each of the 8 output lanes contain two unique PCSLs from service interface lanes i = 0 to 15 <u>encoded as one PAM4 symbol</u>, and two unique PCSLs from service interface lanes i = 16 to 31 <u>encoded as the subsequent PAM4 symbol (see 173.4.7)</u>.

#### 173.4.2.3 8:8 PMA bit-level multiplexing

Change the second list item as shown:

 The 4 PCSLs received on any input lane shall be mapped together to an output lane, <u>maintaining the bit pairs</u> encoded on each PAM4 symbol. Other than that, The order of PCSLs from an input lane does not have to be maintained on the output lane.

## Suggested remedy (modified) – part 1

#### 173.4.2.1 32:8 PMA bit-level multiplexing

Change the second list item as shown:

- The multiplexing function has an additional constraint that each of the 8 output lanes contain two unique PCSLs from PMA client lanes i = 0 to 15 and followed by two unique PCSLs from PMA client lanes i = 16 to 31

#### 173.4.2.2 8:32 PMA bit-level multiplexing

Change the second list item as shown:

- The multiplexing function has an additional constraint that each of the 8 output lanes contain two unique PCSLs from service interface lanes i = 0 to 15 and followed by two unique PCSLs from service interface lanes i = 16 to 31.

## Suggested remedy (modified) – part 2

#### 173.4.2.3 8:8 PMA bit-level multiplexing

Change the second list item as shown:

 The 4 PCSLs received on any input lane shall be mapped together to an output lane <u>such that the Gray-coded</u> <u>PAM4 symbol sequence on the output is identical to the Gray-coded PAM4 symbol sequence on the input (see 173.4.7.1).</u> The order of PCSLs from an input lane does not have to be maintained on the output lane.

## Option X (unconstrained muxing)

Specific example of muxing lanes <u>not</u> according to the diagram in slide 2

|         |          |          |          |          |          |          |          |          | 4:1                                                       |
|---------|----------|----------|----------|----------|----------|----------|----------|----------|-----------------------------------------------------------|
| UI\Lane | 0        | 1        | 2        | 3        | 4        | 5        | 6        | 7        |                                                           |
| 22      | B81A81   | D81C81   | B91A91   | D91C91   | B101A101 | D101C101 | B111A111 | D111C111 |                                                           |
| 21      | B120A120 | D120C120 | B130A130 | D130C130 | B140A140 | D140C140 | B150A150 | D150C150 |                                                           |
| 20      | B80A80   | D80C80   | B90 A90  | D90 C90  | B100A100 | D100C100 | B110A110 | D110C110 |                                                           |
| 19      | A49B49   | C49 D49  | A59 B59  | C59 D59  | A69 B69  | C69 D69  | A79B79   | C79 D79  |                                                           |
| 18      | A9B9     | C9 D9    | A19 B19  | C19 D19  | A29 B29  | C29 D29  | A39B39   | C39 D39  |                                                           |
| 17      | A48B48   | C48D48   | A58 B58  | C58 D58  | A68 B68  | C68 D68  | A78B78   | C78 D78  | lane U lane 1                                             |
| 16      | A8 B8    | C8 D8    | A18B18   | C18D18   | A28 B28  | C28D28   | A38B38   | C38 D38  |                                                           |
| 15      | A47 B47  | C47 D47  | A57 B57  | C57 D57  | A67 B67  | C67 D67  | A77 B77  | C77 D77  | PCS checkerboard symbol pattern                           |
| 14      | A7 B7    | C7 D7    | A17 B17  | 617 D17  | A27 B27  | C27 D27  | A37B37   | C37 D37  |                                                           |
| 13      | A46B46   | C46D46   | A56 B56  | C56 D56  | A66 B66  | C66 D66  | A76B76   | C76 D76  |                                                           |
| 12      | A6B6     | C6 D6    | A16B16   | C16 D16  | A26.B26  | C26D26   | A36B36   | C36 D36  |                                                           |
| 11      | A45 B45  | C45 D45  | A55 B55  | C55 D55  | A65 B65  | C65 D65  | A75B75   | C75 D75  | Each PAM4 symbol contains two bits from the same          |
| 10      | A5 B5    | C5 D5    | A15 B15  | C15 D15  | A25 B25  | C25D25   | A35B35   | C35 D35  | flow but each lane has only one flow                      |
| 9       | A44 B44  | C44 D44  | A54 B54  | C54 D54  | A64 B64  | C64 D64  | A74B74   | C74 D74  | now, but each lane has only one now.                      |
| 8       | A4 B4    | C4 D4    | A14 B14  | C14 D14  | A24 B24  | C24D24   | A34B34   | C34 D34  | This muxing does not adhere to the constraint             |
| 7       | A43B43   | C43D43   | A53 B53  | C53 D53  | A63 B63  | C63 D63  | A73B73   | C73 D73  |                                                           |
| 6       | A3B3     | C3 D3    | A13 B13  | C13D13   | A23 B23  | C23D23   | A33B33   | C33D33   |                                                           |
| 5       | A42B42   | C42 D42  | A52 B52  | C52 D52  | A62 B62  | C62 D62  | A72B72   | C72 D72  | Short bursts can corrupt 4 symbols in the same codeword   |
| 4       | A2B2     | C2 D2    | A12 B12  | C12 D12  | A22 B22  | C22D22   | A32B32   | C32 D32  | - Short bursts can corrupt 4 symbols in the same codeword |
| 3       | A41B41   | C41D41   | A51B51   | C51D51   | A61B61   | C61D61   | A71B71   | C71D71   | Immunity to correlated errors is worse than in            |
| 2       | A1B1     | C1D1     | A11B11   | C11D11   | A21B21   | C21D21   | A31B31   | C31D31   |                                                           |
| 1       | A40B40   | C40 D40  | A50 B50  | C50 D50  | A60 B60  | C60 D60  | A70B70   | C70 D70  | 2006/4006                                                 |
| 0       | A0 B0    | C0 D0    | A10 B10  | C10 D10  | A20 B20  | C20D20   | A30B30   | C30 D30  |                                                           |

### Effect of option X (Compare dashed lines to solid lines)



#### Large SNR penalty for any *a*>0

#### Large minimum DER effect for any *a*>0



## Summary

- The constraints on lane muxing should be retained.
- Additional constraints are proposed to prevent degraded performance due to bad muxing choice.