Lane muxing constraints for 800GBASE-R PMA

(in support of comment \#6, and pertaining to comments \#166, \#167)

Adee Ran, Cisco

Support

- Xiang He, Huawei
- Hao Ren, Huawei
- Ali Ghiasi, Ghiasi Quantum

Restricted PCS lane muxing by the PMA

This was implemented in D1.0 as part of the PMA sublayer, Clause 173:
173.4.2.1 32:8 PMA bit-level multiplexing

In the transmit direction, the function is performed among the PCSLs received from the PMA client via the PMA:IS_UNITDATA_ i request primitives (for PMA client lanes $i=0$ to 31) with the result sent to the service interface below the PMA using the inst:IS_UNITDATA_i.request primitives (for service interface lanes $i=0$ to 7), referencing the functional block diagram shown in Figure 173-3. The bit-level multiplexing function is identical to that specified in 120.5.2, with the following exceptions:

- The number of PCSLs is 32 .
- The multiplexing function has an additional constraint that each of the 8 output lanes contain two unique PCSLs from PMA client lanes $i=0$ to 15 and two unique PCSLs from PMA client lanes $i=16$ to 31
- The purpose of the constraint is to have bits from all four codewords on each PMA lane
- But... there is more than one way to do it
- Comments \#166, \#167 suggest that this constraint become only a recommendation
- Below I compare three options A, B, and X

[^0]
Option A (constrained muxing)

Specific example of muxing lanes per the diagram in slide 3

Ul\Lane	0	1	2	3	4	5	6	7
22	B81A81	B91A91	B101A101	B111A111	B121A121	B131A131	B141A141	B151A151
21	D80C80	D90C90	D100C100	D110C110	D120C120	D130C130	D140C140	D150C150
20	B80A80	B90A90	B100A100	B110A110	B120A120	B130A130	B140A140	B150A150
19	C9D9	C19D19	C29D29	C39D39	C49D49	C59D59	C69D69	C79D79
18	A9B9	A19B19	A29B29	A39B39	A49B49	A59B59	A69B69	A79B79
17	C8D8	C18D18	C28D28	C38D38	C48D48	C58D58	C68D68	C78D78
16	A8B8	A18B18	A28B28	A38B38	A48B48	A58B58	A68B68	A78B78
15	C7D7	C17D17	C27D27	C37D37	C47D47	C57D57	C67D67	C77D77
14	A7B7	A17B17	A27B27	A37B37	A47B47	A57B57	A67B67	A77B77
13	C6D6	C16D16	C26D26	C36D36	C46D46	C56D56	C66D66	C76D76
12	A6B6	A16B16	A26B26	A36B36	A46B46	A56B56	A66B66	A76B76
11	C5D5	C15D15	C25D25	C35D35	C45D45	C55D55	C65D65	C75D75
10	A5B5	A15B15	A25B25	A35B35	A45B45	A55B55	A65B65	A75B75
9	C4D4	C14D14	C24D24	C34D34	C44D44	C54D54	C64D64	C74D74
8	A4B4	A14B14	A24B24	A34B34	A44B44	A54B54	A64B64	A74B74
7	C3D3	C13D13	C23D23	C33D33	C43D43	C53D53	C63D63	C73D73
6	A3B3	A13B13	A23B23	A33B33	A43B43	A53B53	A63B63	A73B73
5	C2D2	C12D12	C22D22	C32D32	C42D42	C52D52	C62D62	C72D72
4	A2B2	A12B12	A22B22	A32B32	A42B42	A52B52	A62B62	A72B72
3	C1D1	C11D11	C21D21	C31D31	C41D41	C51D51	C61D61	C71D71
2	A1B1	A11B11	A21B21	A31B31	A41B41	A51B51	A61B61	A71B71
1	CODO	C10D10	C20D20	C30D30	C40D40	C50D50	C60D60	C70D70
0	AOBO	A10B10	A20B20	A30B30	A40B40	A50B50	A60B60	A70B70

Each PAM4 symbol contains two bits from the same flow (either flow 0 - with codewords A and B, or flow 1

- with codewords C and D)

Consecutive PAM4 symbol are from alternate flows
This muxing adheres to the constraint
Combined with the checkerboard pattern, this muxing allocates LSBs and MSBs of the PAM4 symbols equally among the four codewords

Option B (constrained muxing, alternative)

Another example of muxing lanes per the diagram in slide 3

Ul\Lane	0	1	2	3	4	5	6	7
22	B81D81	B91D91	B101D101	B111D111	B121D121	B131D131	B141D141	B151 D151
21	A80C80	A90C90	A100C100	A110C110	A120C120	A130C130	A140C140	A150C150
20	B80D80	B90 D90	B100D100	B110D110	B120D120	B130D130	B140D140	B150D150
19	B9D9	B19D19	B29D29	B39 D39	B49D49	B59 D59	B69 D69	B79 D79
18	A9C9	A19C19	A29C29	A39 C39	A49 C49	A59 C59	A69 C69	A79 C79
17	B8D8	B18D18	B28D28	B38D38	B48D48	B58 D58	B68D68	B78 D78
16	A8C8	A18C18	A28C28	A38C38	A48C48	A58C58	A68C68	A78C78
15	B7D7	B17D17	B27D27	B37 D37	B47D47	B57 D57	B67 D67	B77 D77
14	A7C7	A17C17	A27C27	A37 C37	A47C47	A57 C57	A67 C67	A77 C77
13	B6D6	B16D16	B26D26	B36D36	B46D46	B56D56	B66D66	B76D76
12	A6C6	A16C16	A26C26	A36C36	A46C46	A56C56	A66C66	A76C76
11	B5D5	B15D15	B25D25	B35 D35	B45 D45	B55 D55	B65 D65	B75 D75
10	A5C5	A15C15	A25C25	A35 C35	A45 C45	A55 C55	A65 C65	A75 C75
9	B4D4	B14D14	B24D24	B34 D34	B44D44	B54 D54	B64 D64	B74D74
8	A4C4	A14C14	A24C24	A34C34	A44C44	A54C54	A64C64	A74C74
7	B3 D3	B13D13	B23 D23	B33 D33	B43 D43	B53 D53	B63 D63	B73 D73
6	A3C3	A13C13	A23C23	A33C33	A43C43	A53C53	A63 C63	A73C73
5	B2 D2	B12 D12	B22 D22	B32 D32	B42 D42	B52 D52	B62 D62	B72 D72
4	A2C2	A12C12	A22C22	A32 C32	A42C42	A52C52	A62 C62	A72C72
3	B1D1	B11D11	B21D21	B31 D31	B41 D41	B51 D51	B61 D61	B71 D71
2	A1C1	A11C11	A21C21	A31 C31	A41C41	A51 C51	A61 C61	A71C71
1	B0D0	B10D10	B20D20	B30 D30	B40D40	B50 D50	B60 D60	B70 D70
0	AOCO	A10C10	A20C20	A30C30	A40C40	A50C50	A60 C60	A70 C70

Each PAM4 symbol contains two bits not from the same flow (in this example, one PAM4 symbol has AC and the other has BD; AD+BC also possible)
This muxing still adheres to the constraint
However, despite the checkerboard pattern, this always allocates MSBs to two of the codewords (here A and B) and LSBs to the other codewords (here C and D)

2/3 of random errors occur in the LSB

Burst error model 2

The second aspect of this table is that of the six possibilities giving bits in error, two have errors in the first bit while four have errors in the second bit.

Correct level	Received level		Error pattern	
	One up	One down	One up	One down
3	3	2	\checkmark, \checkmark	\checkmark, x
2	3	1	\checkmark, x	\times, \checkmark
1	2	0	\times, \checkmark	\checkmark, x
0	1	0	\checkmark, x	\checkmark, \checkmark

The analysis in the remainder of this contribution therefore assumes that if a given symbol is in error, the probability of a bit error in the first bit is $1 / 3$ and in the second bit is $2 / 3$.

This means that, with option B:

- The two codewords that get the MSBs (A/B) have 2/3 of the average BER
- The two codewords that get the LSBs (C/D) have 4/3 of the average BER
- Uncorrectable errors occur more often in C and D
- Any uncorrectable error corrupts all four codewords

Note: if precoding is used, the decoding operation spreads errors equally across MSB and LSB, so this only applies to the non-precoded case

FLR effect of option B with low error correlation (optics or C2M)

Factor of 34 (1.5 orders of magnitude) increase in FLR, or ${ }^{\sim} 0.15 \mathrm{~dB}$ penalty

Reduction of 25% in pre-FEC BER is required

Notes

- The FLR penalty is almost constant (1.5 order of magnitude) regardless of error correlation, so only shown at two values of a
- Higher values of a will likely cause precoding to be used anyway
- "Option B" does not exist in any 200G/400GBASE-R PHY or AUI
- The FLR effect $(\times 34)$ is worse than that of having 4 instead of 2 codewords $(\times 2)$
- Existing links will have a higher FLR at 800G (with option B) than at 200G/400G
- "Option B" may be susceptible to the "low clock content" issue because the LSBs always come from the same flow (and thus the same scrambler), as in clause 119
- In "Option A" the LSBs alternate between two flows, which seems to solve the issue (the probability of having correlated outputs from two separate scramblers is negligible).
- A PMA(8:8) should be prevented from permuting PCSLs such that "option A" at the input is converted to "option B " at the output.

Suggested remedy (per comment \#6)

173.4.2.1 32:8 PMA bit-level multiplexing

Change the second list item as shown:

- The multiplexing function has an additional constraint that each of the 8 output lanes contain two unique PCSLs from PMA client lanes $i=0$ to 15 encoded as one PAM4 symbol, and two unique PCSLs from PMA client lanes $i=16$ to 31 encoded as the subsequent PAM4 symbol (see 173.4.7).

173.4.2.2 8:32 PMA bit-level multiplexing

Change the second list item as shown:

- The multiplexing function has an additional constraint that each of the 8 output lanes contain two unique PCSLs from service interface lanes $\mathrm{i}=0$ to 15 encoded as one PAM4 symbol, and two unique PCSLs from service interface lanes $\mathrm{i}=16$ to 31 encoded as the subsequent PAM4 symbol (see 173.4.7).

173.4.2.3 8:8 PMA bit-level multiplexing

Change the second list item as shown:

- The 4 PCSLs received on any input lane shall be mapped together to an output lane, maintaining the bit pairs encoded on each PAM4 symbol. Other than that, The order of PCSLs from an input lane does not have to be maintained on the output lane.

Suggested remedy (modified) - part 1

173.4.2.1 32:8 PMA bit-level multiplexing

Change the second list item as shown:

- The multiplexing function has an additional constraint that each of the 8 output lanes contain two unique PCSLs from PMA client lanes $i=0$ to 15 and followed by two unique PCSLs from PMA client lanes $i=16$ to 31

173.4.2.2 8:32 PMA bit-level multiplexing

Change the second list item as shown:

- The multiplexing function has an additional constraint that each of the 8 output lanes contain two unique PCSLs from service interface lanes $i=0$ to 15 and followed by two unique PCSLs from service interface lanes $\mathrm{i}=16$ to 31 .

Suggested remedy (modified) - part 2

173.4.2.3 8:8 PMA bit-level multiplexing

Change the second list item as shown:

- The 4 PCSLs received on any input lane shall be mapped together to an output lane such that the Gray-coded PAM4 symbol sequence on the output is identical to the Gray-coded PAM4 symbol sequence on the input (see 173.4.7.1). The order of PCSLs from an input lane does not have to be maintained on the output lane.

Option X (unconstrained muxing)

Specific example of muxing lanes not according to the diagram in slide 2

Effect of option X

(Compare dashed lines to solid lines)

Large SNR penalty for any $\boldsymbol{a}>0$

Large minimum DER effect for any $a>0$

Summary

- The constraints on lane muxing should be retained.
- Additional constraints are proposed to prevent degraded performance due to bad muxing choice.

[^0]: Below, codewords of flow 0 are denoted A/B, those of flow 1 are denoted C/D

