802.3df D2.0
Comment Resolution

P802.3df editorial team
Introduction

- This slide package was assembled by the 802.3df editorial team to provide background and detailed resolutions to aid in comment resolution.
Cross-Clause, Part 1
Normative reference, Clause 1, 124, 167
Comment 55

• Comment #55 pointed out the unusual wording in the IEC normative reference

<table>
<thead>
<tr>
<th>CI</th>
<th>SC</th>
<th>P30</th>
<th>L40</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.3</td>
<td></td>
<td></td>
<td>55</td>
</tr>
</tbody>
</table>

Dudek, Mike Marvell

Comment Type E Comment Status D

"One fibre rows" is strange.

Suggested Remedy
Check the reference and correct to "One fibre row" unless the reference does have this in its title.

Proposed Response Response Status W

PROPOSED ACCEPT IN PRINCIPLE.
The referenced standard is currently in draft state. The title in the referenced draft has recently been corrected to say "One fibre row". Change "rows" to "row".

• The current normative reference in D2.0 is

IEC 61754-7-4:2018, Fibre optic interconnecting devices and passive components—Fibre optic connector interfaces—Part 7-4: Type MPO connector family—One fibre rows 16 fibre wide.
Normative reference, Clause 1, 124, 167
Comment 55

In researching the correct wording of the normative reference, it was identified that the normative reference is still in a draft state and not publicly available.

To prevent the possibility of delaying the completion of 802.3df due to an unavailable normative reference, the editorial team decided to hijack the comment and remove the IEC reference and transition to an equivalent TIA reference.
Normative reference, Clause 1, 124, 167
Comment 55

In 124.11.3.3 replace

The MDI adapter or receptacle shall meet the dimensional specifications for interface 7-4-7: MPO adaptor interface—Opposed keyway configuration or interface 7-4-9: MPO active device receptacle, angled interface for 16 fibers, as defined in IEC 61754-7-4. The plug terminating the optical fiber cabling shall meet the dimensional specifications of interface 7-4-1: MPO female plug, down-angled interface for 16 fibers, as defined in IEC 61754-7-4. The MPO-16 female plug connector and MDI are structurally similar to those depicted in Figure 124–7, but with an angled end facet, 16 fibers, an offset keyway, and different pin diameters and locations.

With

The MDI receptacle shall meet the dimensional specifications for designation FOCIS 18 A-1-0, or designation FOCIS 18 R-1x16-1-8-1-1-2, as defined in ANSI/TIA-604-18-A:2018. The plug terminating the optical fiber cabling shall meet the dimensional specifications of designation FOCIS 18 P-1x16-1-8-2-1-1, as defined in ANSI/TIA-604-18-A:2018. The MPO-16 female plug connector and MDI are structurally similar to those depicted in Figure 124–7, but with an angled end facet, 16 fibers, an offset keyway, and different pin diameters and locations.
In 167.10.3.4 replace

For option B, the MDI adapter or receptacle shall meet the dimensional specifications for interface 7-4-7: MPO adaptor interface – Opposed keyway configuration or interface 7-4-9: MPO active device receptacle, angled interface for 16 fibers, as defined in IEC 61754-7-4. The plug terminating the optical fiber cabling shall meet the dimensional specifications of interface 7-4-1: MPO female plug, down-angled interface for 16 fibers, as defined in IEC 61754-7-4. The MPO female plug connector and MDI are structurally similar to those depicted in Figure 167-9, but with 16 fibers, an offset keyway, and with different pin diameter and locations. The MDI connection shall meet the interface performance specifications of IEC 63267-1 for performance grade Bm/1m.

With

For option B, the MDI receptacle shall meet the dimensional specifications for designation FOCIS 18 A-1-0, or designation FOCIS 18 R-1x16-1-8-1-2-2, as defined in ANSI/TIA-604-18-A:2018. The plug terminating the optical fiber cabling shall meet the dimensional specifications of designation FOCIS 18 P-1x16-1-8-2-2-1, as defined in ANSI/TIA-604-18-A:2018. The MPO female plug connector and MDI are structurally similar to those depicted in Figure 167-10, but with 16 fibers, an angled end facet, an offset keyway, and with different pin diameter and locations. The MDI connection shall meet the interface performance specifications of IEC 63267-1 for performance grade Bm/1m.
Comment 55

Cross-Clause, Part 2
CC: Optical PMD definitions, Clause 1
Comments 73, 74, 75, 76, 77 (part 1)

IEEE P802.3df Task Force, May 2023

May 23, 2023
1.4 Definitions

Insert the following new definition after 1.4.135 400GBASE-DR4:

1.4.135a 400GBASE-DR4-1: IEEE 802.3 Physical Layer specification for 400 Gb/s using 400GBASE-R encoding and 4-level pulse amplitude modulation over four lanes of single-mode fiber, with reach up to at least 2 km. (See IEEE Std 802.3, Clause 124.)

1.4.135b 400GBASE-DR8: IEEE 802.3 Physical Layer specification for 800 Gb/s using 400GBASE-R encoding and 4-level pulse amplitude modulation over eight lanes of single-mode fiber, with reach up to at least 500 m. (See IEEE Std 802.3, Clause 124.)

1.4.135c 400GBASE-DR8-2: IEEE 802.3 Physical Layer specification for 800 Gb/s using 400GBASE-R encoding and 4-level pulse amplitude modulation over eight lanes of single-mode fiber, with reach up to at least 2 km. (See IEEE Std 802.3, Clause 124.)

1.4.135d 500GBASE-SR8: IEEE 802.3 Physical Layer specification for 800 Gb/s using 400GBASE-R encoding and 4-level pulse amplitude modulation over eight lanes of multimode fiber, with reach up to at least 100 m. (See IEEE Std 802.3, Clause 167.)

1.4.135e 500GBASE-VR8: IEEE 802.3 Physical Layer specification for 800 Gb/s using 400GBASE-R encoding and 4-level pulse amplitude modulation over eight lanes of multimode fiber, with reach up to at least 50 m. (See IEEE Std 802.3, Clause 167.)
CC: Optical PMD definitions, Clauses 1
Comments 73, 74, 75, 76, 77 (part 3)

Change 1.4.135a from:
1.4.135a 400GBASE-DR4-2: IEEE 802.3 Physical Layer specification for 400 Gb/s using 400GBASE-R encoding and 4-level pulse amplitude modulation over four single-mode fiber, with reach up to at least 2 km. (See IEEE Std 802.3, Clause 124.)

To:
1.4.135a 400GBASE-DR4-2: IEEE 802.3 Physical Layer specification for 400 Gb/s using 400GBASE-R encoding with 4-level pulse amplitude modulation over four single-mode fibers, with reach up to at least 2 km. (See IEEE Std 802.3, Clause 124.)

Change 1.4.184b from:
1.4.184b 800GBASE-DR8: IEEE 802.3 Physical Layer specification for 800 Gb/s using 800GBASE-R encoding and 4-level pulse amplitude modulation on eight lanes over eight single-mode fibers, with reach up to at least 500 m. (See IEEE Std 802.3, Clause 124.)

To:
1.4.184b 800GBASE-DR8: IEEE 802.3 Physical Layer specification for 800 Gb/s using 800GBASE-R encoding with 4-level pulse amplitude modulation over eight single-mode fibers, with reach up to at least 500 m. (See IEEE Std 802.3, Clause 124.)

Change 1.4.184c from:
1.4.184c 800GBASE-DR8-2: IEEE 802.3 Physical Layer specification for 800 Gb/s using 800GBASE-R encoding and 4-level pulse amplitude modulation over eight lanes of single-mode fiber, with reach up to at least 2 km. (See IEEE Std 802.3, Clause 124.)

To:
1.4.184c 800GBASE-DR8-2: IEEE 802.3 Physical Layer specification for 800 Gb/s using 800GBASE-R encoding with 4-level pulse amplitude modulation over eight single-mode fibers, with reach up to at least 2 km. (See IEEE Std 802.3, Clause 124.)

Change 1.4.184f from:
1.4.184f 800GBASE-SR8: IEEE 802.3 Physical Layer specification for 800 Gb/s using 800GBASE-R encoding and 4-level pulse amplitude modulation over eight lanes of multimode fiber, with reach up to at least 100 m. (See IEEE Std 802.3, Clause 167.)

To:
1.4.184f 800GBASE-SR8: IEEE 802.3 Physical Layer specification for 800 Gb/s using 800GBASE-R encoding with 4-level pulse amplitude modulation over eight multimode fibers, with reach up to at least 100 m. (See IEEE Std 802.3, Clause 167.)

Change 1.4.184g from:
1.4.184g 800GBASE-VR8: IEEE 802.3 Physical Layer specification for 800 Gb/s using 800GBASE-R encoding and 4-level pulse amplitude modulation over eight lanes of multimode fiber, with reach up to at least 50 m. (See IEEE Std 802.3, Clause 167.)

To:
1.4.184g 800GBASE-VR8: IEEE 802.3 Physical Layer specification for 800 Gb/s using 800GBASE-R encoding with 4-level pulse amplitude modulation over eight multimode fibers, with reach up to at least 50 m. (See IEEE Std 802.3, Clause 167.)

Make similar changes to definitions for the following:
(802.3-2022, 802.3db-2022) for 200GBASE-SR4/DR4/VR2/SR2
(802.3-2022, 802.3db-2022) for 400GBASE-SR16/SR8/SR4.2/DR4/VR4/SR4

Implement with editorial license.
For 400GBASE-DR4 change:
400 Gb/s PHY using 400GBASE-R encoding over four lanes of single-mode fiber, with reach up to at least 500 m (see Clause 124)
To:
400 Gb/s PHY using 400GBASE-R encoding over four single-mode fibers, with reach up to at least 500 m (see Clause 124)

For 400GBASE-DR4-2 change:
400 Gb/s PHY using 400GBASE-R encoding over four lanes of single-mode fiber, with reach up to at least 2km (see Clause 124)
To:
400 Gb/s PHY using 400GBASE-R encoding over four single-mode fibers, with reach up to at least 2km (see Clause 124)

Make similar changes as follows:
Table 169-1 for 800GBASE-VR8/SR8/DR8/DR8-2.
Table 116-1 (802.3-2022, 802.3db-2022) for 200GBASE-SR4/DR4/VR2/SR2
Table 116-2 (802.3-2022, 802.3db-2022) for 400GBASE-SR16/SR8/SR4.2/DR4/VR4/SR4

Implement with editorial license.
CC: Optical PMD definitions, Clauses 116 Comments 63, 64 (part 2)

From 802.3-2022...

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>200GBASE-LR4</td>
<td>200 Gb/s PHY using 200GBASE-LR encoding over four lanes of an electrical link (see Clause 116)</td>
</tr>
<tr>
<td>200GBASE-ER4</td>
<td>200 Gb/s PHY using 200GBASE-ER encoding over four lanes of multimode fiber (see Clause 116)</td>
</tr>
<tr>
<td>200GBASE-CR4</td>
<td>200 Gb/s PHY using 200GBASE-CR encoding over four lanes of single-mode fiber, with reach up to at least 3 km (see Clause 116)</td>
</tr>
</tbody>
</table>

From 802.3db-2022...

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>200GBASE-LR4</td>
<td>200 Gb/s PHY using 200GBASE-LR encoding over four lanes of multimode fiber, with reach up to at least 100 m (see Clause 116)</td>
</tr>
<tr>
<td>200GBASE-ER4</td>
<td>200 Gb/s PHY using 200GBASE-ER encoding over four lanes of single-mode fiber, with reach up to at least 100 m (see Clause 116)</td>
</tr>
</tbody>
</table>

From 802.3df D2.0...

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>200GBASE-LR4</td>
<td>200 Gb/s PHY using 200GBASE-LR encoding over four lanes of multimode fiber, with reach up to at least 100 m (see Clause 116)</td>
</tr>
<tr>
<td>200GBASE-ER4</td>
<td>200 Gb/s PHY using 200GBASE-ER encoding over four lanes of single-mode fiber, with reach up to at least 100 m (see Clause 116)</td>
</tr>
</tbody>
</table>
CC: MAU type definitions, Clause 30
Comments 78, 79, 80, 61, 62 (part 1)
CC: MAU type definitions, Clause 30
Comments 78, 79, 80, 61, 62 (part 2)

From 802.3df D2.0...

30.5 Layer management for medium attachment units (MAUs)
30.5.1 MAU managed object class
30.5.1.1 MAU attributes
30.5.1.1.2 MAUType

APPROPRIATE SYNTAX:

Change the 40GBase-DR4 entry in “APPROPRIATE SYNTAX” in 30.5.1.1.2 as follows:

40GBase-DR4 40GBase-R PCS/PMA over 4-lane multimode fiber PMD with reach up to at least 200 m as specified in Clause 124

Insert the following new entry into “APPROPRIATE SYNTAX” in 30.5.1.1.2 after the entry for 40GBase-DR4:

40GBase-DR4-2 40GBase-R PCS/PMA over 4-lane single-mode fiber PMD with reach up to at least 100 m as specified in Clause 129

Insert the following new entries into “APPROPRIATE SYNTAX” in 30.5.1.1.2 (as modified by IEEE Std 802.3-2022) after the entry for 40GBase-SR4:

40GBase-CR4 40GBase-R PCS/PMA over 4 lane shielded balanced copper cable PMD as specified in Clause 136
40GBase-D4 40GBase-R PCS/PMA over 8 lane multimode fiber PMD with reach up to at least 500 m as specified in Clause 134
40GBase-D2 40GBase-R PCS/PMA over 8 lane single-mode fiber PMD with reach up to at least 50 m as specified in Clause 136
40GBase-DX 40GBase-R PCS/PMA over an electrical backplane PMD as specified in Clause 163
40GBase-SR4 40GBase-R PCS/PMA over 8 lane multimode fiber PMD with reach up to at least 50 m as specified in Clause 167
40GBase-SR4 40GBase-R PCS/PMA over 8 lane single-mode fiber PMD with reach up to at least 50 m as specified in Clause 167

From 802.3db-2022...

Insert the following new entry into “APPROPRIATE SYNTAX” in 30.5.1.1.2 after 40GBase-SR4 as follows:

40GBase-SR4 40GBase-R PCS/PMA over 4 lane multimode fiber PMD with reach up to at least 100 m as specified in Clause 167

Insert the following new entry into “APPROPRIATE SYNTAX” in 30.5.1.1.2 after 40GBase-SR4 as follows:

40GBase-SR4 40GBase-R PCS/PMA over 4 lane single-mode fiber PMD with reach up to at least 100 m as specified in Clause 167

Insert the following new entry into “APPROPRIATE SYNTAX” in 30.5.1.1.2 after 40GBase-SR4 as follows:

40GBase-SR4 40GBase-R PCS/PMA over 4 lane multimode fiber PMD with reach up to at least 100 m as specified in Clause 167

Insert the following new entry into “APPROPRIATE SYNTAX” in 30.5.1.1.2 after 40GBase-SR4 as follows:

40GBase-SR4 40GBase-R PCS/PMA over 4 lane single-mode fiber PMD with reach up to at least 100 m as specified in Clause 167

From 802.3-2022...

200GBASE-CR4 200GBASE-R PCS/PMA over 4 lane shielded balanced copper cable PMD as specified in Clause 136
200GBASE-DR4 200GBASE-R PCS/PMA over 4 lane multimode fiber PMD with reach up to at least 100 m as specified in Clause 121
200GBASE-EX4 200GBASE-R PCS/PMA over 4 WDM lane single-mode fiber PMD with reach up to at least 40 km as specified in Clause 132
200GBASE-FR4 200GBASE-R PCS/PMA over 4 WDM lane single-mode fiber PMD with reach up to at least 3 km as specified in Clause 132
200GBASE-EX4 200GBASE-R PCS/PMA over an electrical backplane PMD as specified in Clause 137
200GBASE-ER4 200GBASE-R PCS/PMA over 4 lane single-mode fiber PMD with reach up to at least 10 km as specified in Clause 132
200GBASE-ER 200GBASE-R PCS/PMA over 4 lane multimode fiber PMD as specified in Clause 138
400GBASE-DR4 400GBASE-R PCS/PMA over 8 lane single-mode fiber PMD as specified in Clause 136
400GBASE-EX8 400GBASE-R PCS/PMA over 8 WDM lane single-mode fiber PMD with reach up to at least 50 m as specified in Clause 122
400GBASE-FR8 400GBASE-R PCS/PMA over 8 WDM lane single-mode fiber PMD with reach up to at least 10 km as specified in Clause 131
400GBASE-LR4 400GBASE-R PCS/PMA over 4 WDM lane single-mode fiber PMD with reach up to at least 6 km as specified in Clause 132
400GBASE-LR8 400GBASE-R PCS/PMA over 8 WDM lane single-mode fiber PMD with reach up to at least 6 km as specified in Clause 131
400GBASE-SR4 400GBASE-R PCS/PMA over 8 lane single-mode fiber PMD with reach up to at least 10 km as specified in Clause 132
400GBASE-SR8 400GBASE-R PCS/PMA over 8 lane multimode fiber PMD as specified in Clause 138
400GBASE-S8 400GBASE-R PCS/PMA over 8 lane multimode fiber PMD as specified in Clause 138
802.3a Integrated services MAU as specified in IEEE Std 802.3a-1995 (withdrawn)
CC: MAU type definitions, Clause 30
Comments 78, 79, 80, 61, 62 (part 3)

For 800GBASE-SR8 change:
800GBASE-R PCS/PMA over 8-lane multimode fiber PMD with reach up to at least 100 m as specified in Clause 167
To:
800GBASE-R PCS/PMA over 8 multimode fibers PMD with reach up to at least 100 m as specified in Clause 167

For 800GBASE-VR8 change:
800GBASE-R PCS/PMA over 8-lane multimode fiber PMD with reach up to at least 50 m as specified in Clause 167
To:
800GBASE-R PCS/PMA over 8 multimode fibers PMD with reach up to at least 50 m as specified in Clause 167

For 800GBASE-DR8 change:
800GBASE-R PCS/PMA over 8-lane single-mode fiber PMD with reach up to at least 500 m as specified in Clause 124
To:
800GBASE-R PCS/PMA over 8 single-mode fibers PMD with reach up to at least 500 m as specified in Clause 124

For 800GBASE-DR8-2 change:
800GBASE-R PCS/PMA over 8-lane single-mode fiber PMD with reach up to at least 2 km as specified in Clause 124
To:
800GBASE-R PCS/PMA over 8 single-mode fibers PMD with reach up to at least 2 km as specified in Clause 124

For 400GBASE-DR4 change, with appropriate editorial markups:
400GBASE-R PCS/PMA over 4-lane single-mode fiber PMD with reach up to at least 500 m as specified in Clause 124
To:
400GBASE-R PCS/PMA over 4 single-mode fibers PMD with reach up to at least 500 m as specified in Clause 124

For 400GBASE-DR4-2 change, with appropriate editorial markups:
400GBASE-R PCS/PMA over 4-lane single-mode fiber PMD with reach up to at least 2 km as specified in Clause 124
To:
400GBASE-R PCS/PMA over 4 single-mode fibers PMD with reach up to at least 2 km as specified in Clause 124

Make similar changes for the following:
- 200GBASE-SR4/DR4/VR2/SR2
- 400GBASE-SR16/SR8/SR4.2/DR4/VR4/SR4

Also, it was noted that the definition for the 800GBASE-R PCS is missing in 30.5.1.1.2.

In 30.5.1.1.2 add the following definition:
“800GBASE-R Multi-lane PCS as specified in Clause 172 over undefined PMA/PMD”

Implement with editorial license
Clause 45
This table is relevant only for AUI-C2C with 25 and 50 Gb/s per lane; 100 Gb/s per lane requires a different equalizer (e.g., 3 precursor taps). So, it is irrelevant for 802.3df. The “-n” in the table title should be changed to specific numbers to exclude the 100 Gb/s per lane AUIs defined in 802.3ck. This requires maintenance action.
TX EQ register, Clause 45
Comments 57, 25, 26, 27, 28, 29

This comment and comments 26 through 29 are overtaken by comment #16
(text subject of these comments will be removed)

Addressed by comment #16
Comments 17, 21 and 30

Request to delete redundant text in 45.2.3.25, 45.2.4.15 and 45.2.5.15

Change 45.2.3.25 as follows:

45.2.3.25 Multi-lane BASE-R PCS alignment status 3 registers 3 through 5 (Register 3.52, 3.53, 3.54)

The assignment of bits in the multi-lane BASE-R PCS alignment status 3 registers is shown in Table 45–254, Table 45–255, and Table 45–255a. All the bits in the multi-lane BASE-R PCS alignment status 3 registers are read only: a write to the multi-lane BASE-R PCS alignment status 3 registers shall have no effect. A PCS device that does not implement multi-lane BASE-R PCS shall return a zero for all bits in the multi-lane BASE-R PCS alignment status 3 registers. A device that implements multi-lane BASE-R PCS shall return a zero for all bits in the multi-lane BASE-R PCS alignment status 3 registers that are not required for the PCS configuration. It is the responsibility of the STA management entity to ensure that a port type is supported by all MMDs before interrogating any of its status bits.

Clause 82 specifies 4 PCS lanes for 40GBASE-R and 50GBASE-R, and 20 PCS lanes for 100GBASE-R operation. Clause 119 specifies 8 PCS lanes for 200GBASE-R and 16 for 400GBASE-R operation. Clause 172 specifies 32 PCS lanes for 800GBASE-R operation.
Comments 22 and 23

Request to remove the word "optional" in the second sentence of 45.2.4.16a and 45.2.5.16a

Insert 45.2.4.16a and 45.2.4.16b after 45.2.4.16 as follows:

45.2.4.16a PHY XS RS-FEC codeword counter register (Register 4.300, 4.301, 4.302)

The assignment of bits in the PHY XS RS-FEC codeword counter register is shown in Table 45–326b. The PHY XS RS-FEC codeword counter register applies to the RS-FEC defined in Clause 172. See 172.3.5 for a definition of this optional counter. It is a 48-bit counter that counts once for each FEC codeword received when align status (4.50.12) is set to one. Its bits are reset to all zeros when the register is read by the management function or upon reset, and held at all ones in the case of overflow.
Clause 171
800GMII Extender FEC degrade, Clause 171
Comment 99

171.2 DTE 800GXS Sublayer
The DTE 800GXS shall be identical in function to the 800GBASE-R PCS (see Clause 172) with the modified exception that the FEC degrade signaling is defined in 171.5. Figure 172-2 provides a functional block diagram.

171.3 PHY 800GXS Sublayer
The PHY 800GXS shall be identical in function to an 800GBASE-R PCS (see Clause 172) with the following exceptions:
— The PCS is inverted with the transmit function used for the receive direction and vice versa.
— The service interface signals are remapped as defined in 171.3.2 and 171.3.3.
— FEC degrade signaling is defined in 171.2 182.2.
800GMII Extender FEC degrade, Clause 171 Comment 99 (cont’d)

119.2.4.4 Alignment marker mapping and insertion

The transmit alignment marker status field allows the local PCS to communicate the status of the FEC degraded feature to the remote PCS. If there is no extender sublayer between the PCS and the MAC, it is set as follows:

\[tx_{am_sf<2:0>} = \{FEC_degraded_SER + rx_local_degraded,0,0\} \]

Two different definitions for degrade signalling are defined in Clause 119, depending on whether the PCS is directly below the MAC or below an MII Extender. In the case of a DTE XS, it is only the first of these that is applicable.

This is the degrade signaling \(tx_{am_sf<2:0>}\) when the PCS is directly below the MAC. This also applies to the DTE XS.

If there is a Clause 118 extender sublayer between the PCS and the MAC, it is set as follows:

\[tx_{am_sf<2:0>} = \{PHY_XS:rx_rm_degraded,PHY_XS:FEC_degraded_SER,0\} \]

Where \(PHY_XS:rx_rm_degraded\) and \(PHY_XS:FEC_degraded_SER\) are the \(rx_rm_degraded\) and \(FEC_degraded_SER\) variables from the adjacent \(PHY_XS\) sublayer.

This is the degrade signaling \(tx_{am_sf<2:0>}\) when the PCS is directly below an MII Extender. This does not apply to a DTE XS.

See 119.2.5.3 for more information on the optional FEC degrade feature.
Clause 172
Subclause organization, Clause 172
Comments 35, 37

Huber, Tom
Nokia

Comment Type E Comment Status X
Per the style guide, a clause should not have a single subclause. It is however useful to have some separation between the general description and this new stateless encoder.

Suggested Remedy
One option would be to make 172.2.4.1.1 a level-4 heading. The other would be insert a level 5 heading immediately after 172.2.4.1 with an innocuous title like 'Process description' and renumber the existing 172.2.4.1.1 to 172.2.4.1.2. In either case, the cross-reference at line 15 would also need to be updated.

Proposed Response
Response Status O

Huber, Tom
Nokia

Comment Type E Comment Status X
Per the style guide, a clause should not have a single subclause. It is however useful to have some separation between the general description and this new stateless encoder.

Suggested Remedy
One option would be to make 172.2.5.8.1 a level-4 heading. The other would be insert a level 5 heading immediately after 172.2.5.8 with an innocuous title like 'Process description' and renumber the existing 172.2.5.8.1 to 172.2.5.8.2. In either case, the cross-reference at line 3 would also need to be updated.

Proposed Response
Response Status O
802.3df D2.0 172.2.4.1
Comments 35, 37 (cont’d)

172.2.4 Transmit function

172.2.4.1 Encode, rate matching, and block distribution

The transmit PCS generates 66-bit blocks based on the TXD<65:0> and TXC<7:0> signals received from the 800GMII as specified by the transmit state diagram shown in Figure 119-14 or by the stateless encoder specified in 172.2.4.1.1. One 800GMII data transfer is encoded into one 66-bit block. The contents of each 66-bit block are contained in a vector ts_coded<65:0>, ts_coded<6:0> contains the sync header and the remainder of the bits contain the payload.

The transmit PCS may remove idle control characters or sequence ordered sets to compensate for the insertion of alignment markers. The transmit PCS may remove idle control characters or sequence ordered sets or may insert idle control characters to compensate for different clock domains on the 800GMII and the PMA service interface. See 119.2.3.5 and 119.2.3.8 for the deletion and insertion rules.

The 66-bit blocks are distributed to the two flows in an alternating fashion by the block distribution function such that the first 66-bit block is sent to flow 0, the second 66-bit block is sent to flow 1, the third 66-bit block is sent to flow 0, and subsequent 66-bit blocks continue the distribution procedure across the two flows.

172.2.4.1.1 PCS stateless encoder

An alternate method to that defined by the transmit state diagram shown in Figure 119-14 is specified in this subclause. This stateless encoder depends only on the current and preceding 72-bit 800GMII vectors. The encoder shall encode each 72-bit 800GMII vector (tx_raw) to a 66-bit block (tx_coded) according to the rules in Table 172-1. Constants LBLOCK_T and EBLOCK_T are defined in 119.2.6.2.1. Variables reset, tx_raw, and tx_coded are defined in 119.2.6.2. Variables T_TYPE and ENCODE, and the block types are defined in 119.2.6.2.3.

<table>
<thead>
<tr>
<th>reset</th>
<th>T_TYPE(tx_raw)</th>
<th>T_TYPE(tx_coded)</th>
<th>Resulting tx_coded</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>any block type</td>
<td>any block type</td>
<td>LBLOCK_T</td>
</tr>
<tr>
<td>0</td>
<td>C or T</td>
<td>C</td>
<td>ENCODE(tx_coded)</td>
</tr>
<tr>
<td>0</td>
<td>S or D</td>
<td>D</td>
<td>ENCODE(tx_coded)</td>
</tr>
<tr>
<td>0</td>
<td>S or D</td>
<td>S</td>
<td>EBLOCK_T</td>
</tr>
<tr>
<td>0</td>
<td>any combination not listed above</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comment #35 points out we cannot have a single subclause per the style guide.
172.2.4.1 has a single subclause 172.2.4.1.1.
802.3df D2.0 172.2.5. Comments 35, 37 (cont’d)

172.2.5.8 Block collection, decode, and rate matching

The block collection reverses the block distribution done in the transmitter (see 172.2.4.1) by combining the 66-bit blocks from the two flows in an alternating fashion to form a single stream of 66-bit blocks. The first 66-bit block after the alignment marker group from flow 0 shall be followed by the first 66-bit block after the alignment marker group from flow 1.

The receive PCS decodes 66-bit blocks to produce RXD<63:0> and RXC<7:0> for transmission to the 800GMII as specified by the receive state diagram shown in Figure 119–15 or by the stateless decoder specified in 172.2.5.8.1. One 800GMII data transfer is decoded from each 66-bit block.

The receive PCS may insert idle control characters to compensate for the deletion of alignment markers. The receive PCS may remove idle control characters or sequence ordered sets or may insert idle control characters to compensate for different clock domains on the PMA service interface and the 800GMII. See 119.2.3.5 and 119.2.3.8 for the deletion and insertion rules.

172.2.5.8.1 PCS stateless decoder

An alternate method to that defined by the receive state diagram shown in Figure 119–15 is specified in this subclause. This stateless decoder depends only on the current and preceding 66-bit block. The decoder shall decode each 66-bit block (rx_coded) to a 72-bit 800GMII vector (rx_raw) according to the rules in Table 172–4. Constants LBLOCK_R and EBLOCK_R are defined in 119.2.6.2.1. Variables reset, rx_raw, and rx_coded are defined in 119.2.6.2.2. Functions R_TYPE and DECODE, and the block types are defined in 119.2.6.2.3.

<table>
<thead>
<tr>
<th>reset</th>
<th>R_TYPE(rx_coded)</th>
<th>RX_TYPE(rx_coded)</th>
<th>Resulting rx_raw</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>any block type</td>
<td>any block type</td>
<td>LBLOCK_R</td>
</tr>
<tr>
<td>0</td>
<td>any block type</td>
<td>E</td>
<td>EBLOCK_R</td>
</tr>
<tr>
<td>0</td>
<td>E</td>
<td>any block type</td>
<td>EBLOCK_R</td>
</tr>
<tr>
<td>0</td>
<td>any combination</td>
<td></td>
<td>DECODE(rx_coded)</td>
</tr>
</tbody>
</table>

Comment #37 points out we cannot have a single subclause per the style guide.

172.2.5.8 has a single subclause 172.2.5.8.1.
Comments 35, 37
Proposed response approach

For Comment 35
- Replace 172.2.4.1 by the following 3 subclauses:
 - 172.2.4.1 Encode
 - 172.2.4.1.1 State machine encoder
 - 172.2.4.1.2 Stateless encoder
 - 172.2.4.2 Rate matching
 - 172.2.4.3 Block distribution

For Comment 37
- Replace 172.2.5.8 by the following 3 subclauses:
 - 172.2.5.8 Block collection
 - 172.2.5.9 Decode
 - 172.2.5.9.1 State machine decoder
 - 172.2.5.9.2 Stateless decoder
 - 172.2.5.10 Rate matching

See detailed response in next two slides
background

From 802.3df D2.0...

172.2.6.2.2 Variables

The variables are the same as those specified in 119.2.6.2.2 with the following exceptions:
— 200GMII/400GMII is replaced with 800GMII.

From 802.3-2022, 119.2.6.2.2...

tx_coded<65:0>
 Vector containing the output from the 64B/66B encoder. The format for this vector is shown in Figure 82–5. The leftmost bit in the figure is tx_coded<0> and the rightmost bit is tx_coded<65>.

tx_raw<71:0>
 Vector containing one 200GMII/400GMII transfer. TXC<0> through TXC<7> are placed in tx_raw<0> through tx_raw<7>, respectively. TXD<0> through TXD<63> are placed in tx_raw<8> through tx_raw<71>, respectively.

rx_coded<65:0>
 Vector containing the input to the 64B/66B decoder. The format for this vector is shown in Figure 82–5. The leftmost bit in the figure is rx_coded<0> and the rightmost bit is rx_coded<65>.

rx_raw<71:0>
 Vector containing one 200GMII/400GMII transfer. RXC<0> through RXC<7> are from rx_raw<0> through rx_raw<7>, respectively. RXD<0> through RXD<63> are from rx_raw<8> through rx_raw<71>, respectively.
Comment 35: Proposed replacement text

172.2.4.1 Encode

The transmit PCS generates 66-bit blocks based on the TXD<63:0> and TXC<7:0> signals received from the 800GMII. Each 800GMII transfer is encoded into one 66-bit block. The contents of each 66-bit block are contained in a vector tx_coded<65:0> with tx_coded<1:0> containing the sync header and the remainder of the bits the payload.

The transmit PCS shall use the encoding method defined in either 172.2.4.1 or 172.2.4.2.

172.2.4.1.1 State diagram encoder

The state diagram encoder generates 66-bit blocks based on the TXD<63:0> and TXC<7:0> signals received from the 800GMII as specified by the transmit state diagram shown in Figure 119–14.

172.2.4.1.2 Stateless encoder

The stateless encoder generates 66-bit blocks based only on the current and preceding 800GMII transfers. Each 800GMII transfer is mapped into a 72-bit vector tx_raw<71:0> (see 172.2.6.2.2). The encoder shall encode each tx_raw<71:0> to a 66-bit block tx_coded<65:0> according to the rules in Table 172–1. Constants LBLOCK_T and EBLOCK_T are defined in 119.2.6.2.1. Variables reset, tx_raw, and tx_coded are defined in 172.2.6.2.2. Functions T_TYPE and ENCODE, and the block types are defined in 172.2.6.2.3.

Table 172–1

<table>
<thead>
<tr>
<th>reset</th>
<th>T_TYPE(tx_raw)8</th>
<th>T_TYPE(tx_raw)9</th>
<th>Resulting tx_coded</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>any block type</td>
<td>any block type</td>
<td>LBLOCK_T</td>
</tr>
<tr>
<td>0</td>
<td>C or T</td>
<td>C</td>
<td>ENCODE(tx_raw)</td>
</tr>
<tr>
<td>0</td>
<td>C or T</td>
<td>S</td>
<td>ENCODE(tx_raw)</td>
</tr>
<tr>
<td>0</td>
<td>S or D</td>
<td>D</td>
<td>ENCODE(tx_raw)</td>
</tr>
<tr>
<td>0</td>
<td>S or D</td>
<td>T</td>
<td>ENCODE(tx_raw)</td>
</tr>
<tr>
<td>0</td>
<td>any combination not listed above</td>
<td>EBLOCK_T</td>
<td></td>
</tr>
</tbody>
</table>

8 tx_raw<71:0> is the 72-bit vector that immediately precedes tx_raw.
txRaw<71:0> is the 72-bit vector that is being encoded.

172.2.4.2 Rate matching

The transmit PCS may remove idle control characters or sequence ordered sets to compensate for the insertion of alignment markers. The transmit PCS may remove idle control characters or sequence ordered sets or may insert idle control characters to compensate for different clock domains on the 800GMII and the PMA service interface. See 119.2.3.5 and 119.2.3.8 for the deletion and insertion rules.

172.2.4.3 Block distribution

The 66-bit blocks are distributed to the two flows in an alternating fashion by the block distribution function such that the first 66-bit block is sent to flow 0, the second 66-bit block is sent to flow 1, the third 66-bit block is sent to flow 0, and subsequent 66-bit blocks continue the distribution procedure across the two flows.

From 802.3df D2.0 (for comparison)...

172.2.4.1 Encode, rate matching, and block distribution

The transmit PCS generates 66-bit blocks based on the TXD<63:0> and TXC<7:0> signals received from the 800GMII as specified by the transmit state diagram shown in Figure 119–14 or by the stateless encoder specified in 172.2.4.1.1. One 800GMII data transfer is encoded into one 66-bit block. The contents of each 66-bit block are contained in a vector tx_coded<65:0>. tx_coded<1:0> contains the sync header and the remainder of the bits contain the payload.

The transmit PCS may remove idle control characters or sequence ordered sets to compensate for the insertion of alignment markers. The transmit PCS may remove idle control characters or sequence ordered sets or may insert idle control characters to compensate for different clock domains on the 800GMII and the PMA service interface. See 119.2.3.5 and 119.2.3.8 for the deletion and insertion rules.

The 66-bit blocks are distributed to the two flows in an alternating fashion by the block distribution function such that the first 66-bit block is sent to flow 0, the second 66-bit block is sent to flow 1, the third 66-bit block is sent to flow 0, and subsequent 66-bit blocks continue the distribution procedure across the two flows.

172.2.4.1.1 PCS stateless encoder

An alternate method to that defined by the transmit state diagram shown in Figure 119–14 is specified in this subclause. This stateless encoder depends only on the current and preceding 800GMII vectors. The encoder shall encode each 72-bit 800GMII vector (tx_raw) to a 66-bit block (tx_coded) according to the rules in Table 172–1. Constants LBLOCK_T and EBLOCK_T are defined in 119.2.6.2.1. Variables reset, tx_raw, and tx_coded are defined in 119.2.6.2.2. Functions T_TYPE and ENCODE, and the block types are defined in 119.2.6.2.3.
Comment 37: Proposed replacement text

172.2.5.8 Block collection
The block collection reverses the block distribution done in the transmitter (see 172.2.4.3) by combining the 66-bit blocks from the two flows in an alternating fashion to form a single stream of 66-bit blocks. The first 66-bit block after the alignment marker group from flow 0 shall be followed by the first 66-bit block after the alignment marker group from flow 1.

172.2.5.9 Decode
The receive PCS decodes 66-bit blocks to produce RXD<63:0> and RXC<7:0> for transmission to the 800GMII. One 800GMII transfer is decoded from each 66-bit block.

The receive PCS shall use the decoding method defined in either 172.2.5.9.1 or 172.2.5.9.2.

172.2.5.9.1 State diagram decoder
The state diagram decoder decodes 66-bit blocks to produce RXD<63:0> and RXC<7:0> for transmission to the 800GMII as specified by the receive state diagram shown in Figure 119–15.

172.2.5.9.2 Stateless decoder
The stateless decoder generates 800GMII transfers based only on the current and preceding 66-bit blocks. The decoder shall decode each 66-bit block rx_coded<65:0> to a 72-bit vector rx_raw<71:0> (see 172.2.6.2.2) according to the rules in Table 172–4. Constants LBLOCK_R and EBLOCK_R are defined in 172.2.6.2.1. Variables reset, rx_raw, and rx_coded are defined in 172.2.6.2.2. Functions R_TYPE and DECODE, and the block types are defined in 172.2.6.2.3.

Table 172–4

172.2.5.10 Rate matching
The receive PCS may insert idle control characters to compensate for the deletion of alignment markers. The receive PCS may remove idle control characters or sequence ordered sets or may insert idle control characters to compensate for different clock domains on the PMA service interface and the 800GMII. See 119.2.3.5 and 119.2.3.8 for the deletion and insertion rules.
Clause 173
PMA bit multiplexing, Clause 173
Comment 6

Change 173.4.2.1 (page 232, line 12) from:
The bit-level multiplexing function is identical to that specified in 120.5.2, with the following exceptions:
To:
The restricted bit-level multiplexing function is identical to that specified in 120.5.2, with the following exceptions:

Change 173.4.2.2 (page 232, line 38) from:
The bit-level multiplexing function is identical to that specified in 120.5.2, with the following exceptions:
To:
The restricted bit-level multiplexing function is identical to that specified in 120.5.2, with the following exceptions:

Change 173.4.2.3 (page 233, line 4) from:
In both the transmit and receive directions, the bit-level multiplexing function is identical to that specified in 120.5.2, with the following exceptions:
To:
In both the transmit and receive directions, the restricted bit-level multiplexing function is identical to that specified in 120.5.2, with the following exceptions:
PMA location, Clause 173 comment 68

173.1.4 text is replicated here:

A 32:8 PMA sublayer is required in a PHY or an 800GMII Extender and is located immediately below either the 800GBase-R PCS sublayer or the DTE 800GXS sublayer, respectively.

An 8:32 PMA sublayer is required in an 800GMII Extender and is located immediately above the PHY 800GXS sublayer.

An 8:8 PMA sublayer is required in a PHY with one or two physical instantiations of the PMA service interface (800GAUI-8) or in an 800GMII Extender with two physical instantiations of the PMA service interface (800GAUI-8).

Update text of 173.1.4 (above) as follows (with editorial licence):

32:8 PMA is required as follows:
-- in an 800GBase-R PHY immediately below the 800GBase-R PCS and immediately above either an 800GAUI-8 or 800GBase-8 PMD
-- in an 800GMII Extender immediately below the DTE 800GXS and immediately above an 800GAUI-8

8:32 PMA is required as follows:
-- in an 800GMII Extender, located immediately below an 800GAUI-8 and immediately above the PHY 800GXS

8:8 PMA is required as follows:
-- in an 800GMII Extender with two 800GAUI-8, located immediately between the two 800GAUI-8
-- in an 800GBase-R PHY, located immediately below an 800GAUI-8 and immediately above either an 800GAUI-8 or 800GBase-8 PMD

Some of the extra details are not too important for this generation, but once we add the 200 Gb/s per lane AUls there will be some ambiguity.

Splitting the details makes it clear that that you might have an 8:8 and 32:8 in both the extender and the PHY.

Add three separate subclauses under 173.4, to contain the functional overview and block diagram for the three individual PMAs, 32:8 PMA, 8:32 PMA and 8:8 PMA.