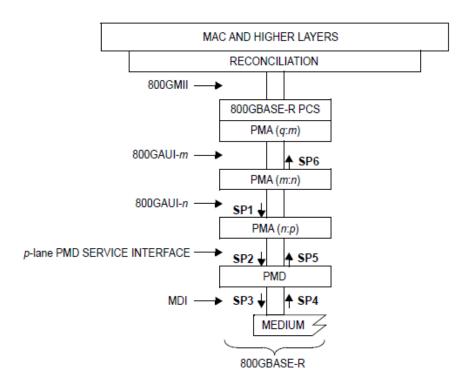
800GbE Logic Skew


IEEE P802.3df Logic ad hoc February 21, 2023

Mark Gustlin – Cisco

Introduction

- We have had the same skew budget since 100GbE days, as a comment from Adee Ran pointed out against draft 1.1
- My view is that keeping that same budget is not a big concern since most designs are port groups and they must support the super set of speeds and skew budgets, but there is likely room for reductions
 - A reduced skew budget could have a small benefit for some single port or single speed designs
- Skew budgets are forever, and will break a link if we get it wrong, so we need to be careful if we reduce the skew budget
- This takes a new look at the total logic skew needed for 800GbE

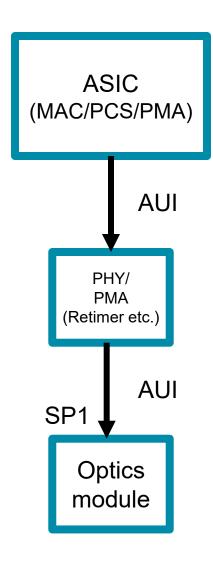
Current Budget

800GAUI-n = 800 Gb/s ATTACHMENT UNIT INTERFACE 800GMII = 800 Gb/s MEDIA INDEPENDENT INTERFACE q=32 m=8 MDI = MEDIUM DEPENDENT INTERFACE pCS = PHYSICAL CODING SUBLAYER pMA = PHYSICAL MEDIUM ATTACHMENT PMD = PHYSICAL MEDIUM DEPENDENT MEDIUM DEPENDENT M=8 p=8

Figure 169-5-800GBASE-R Skew points for a PHY with multiple 800GAUI-n

Each skew point is additive from the previous one

Table 169-5—Summary of Skew constraints


Skew points	Maximum Skew (ns) ^a	Maximum Skew for 800GBASE-R PCS lane (UI) ^b	Notes ^c		
SP1	29	≈ 770	See 173.4.3		
SP2	43	≈ 1142	See 173.4.3, 124.3.2, 162.6.2, 163.6.2, 167.3.2		
SP3	54	≈ 1434	See 173.4.3, 124.3.2, 162.6.2, 163.6.2, 167.3.2		
SP4	134	≈ 3559	See 173.4.3, 124.3.2, 162.6.2, 163.6.2, 167.3.2		
SP5	145	≈ 3852	See 173.4.3, 124.3.2, 162.6.2, 163.6.2, 167.3.2		
SP6	160	≈ 4250	See 173.4.3		
At PCS receive	180	≈ 4781	See 172.2.5.1		

^a The Skew limit includes 1 ns allowance for PCB traces that are associated with the Skew points.

b The symbol ≈ indicates approximate equivalent of maximum Skew in UI based on 1 UI equals 37.64706 ps at PCS lane signaling rate of 26.5625 GBd.

^c Should there be a discrepancy between this table and the Skew requirements of the relevant sublayer clause, the sublayer clause prevails.

SP1 View

- SP1 has multiple possible components:
 - Skew from a large ASIC
 - Skew from a PHY type device (if used)
 - PCB board skew

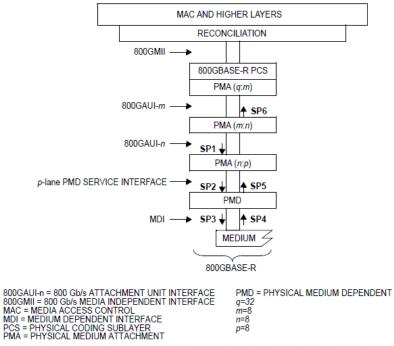
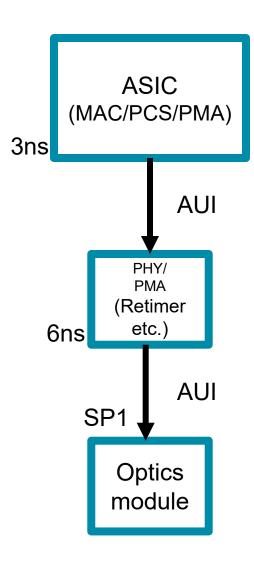
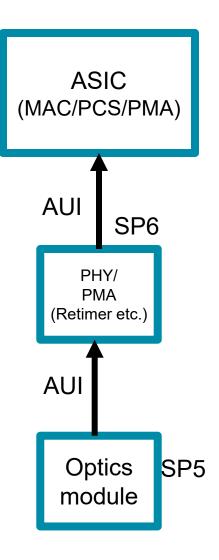



Figure 169-5—800GBASE-R Skew points for a PHY with multiple 800GAUI-n

SP1 View



- ASIC contribution could be up to 3ns in the worst case for devices I surveyed
- PHY contribution is up to 6ns for devices I surveyed
 - If the PHY is just a retimer than it adds to the budget
 - If the PHY is a PCS/MAC/MACsec device, then the skew budget is reset at this point
- Board skew contribution
 - 2ns per 12" of PCB, allocate 6" of delta for a port? So assume 1ns?
 - This is pessimistic, but a small adder to the budget
- Total SP1 skew is ~10ns
- Think we should pad it by 5ns, so proposing 15ns total budget
 - Above skew is for a limited number of devices

Adee's proposed remedy:

Skew point	Contributor		Cumulative (PCS UI)	Cumulative (ns)	Reason
SP1	Tx PCS/PMA and possible external PMA	192	~770 192	29 ≈7.2	PCS/PMA Tx + PMA Rx + PMA Tx

SP6 View

- PHY contribution is up to 6ns for devices I surveyed
 - If the PHY is just a retimer than it adds to the budget
 - If the PHY is a PCS/MAC/MACsec device, then the skew budget is reset at this point
- Board skew contribution
 - 2ns per 12" of PCB, allocate 6" of delta for a port?
 - So assume 1ns.
- Unaccounted for skew in the optical module PMA
- Total SP6 skew is ~7ns + optical PMA skew
- Assuming the optical PMA skew is a few ns worst case
- Think we should pad it by 5ns, so proposing 15ns total budget?
 - Above skew is for a limited number of devices
 - Could refine this once we know more about the PMA in the optical module

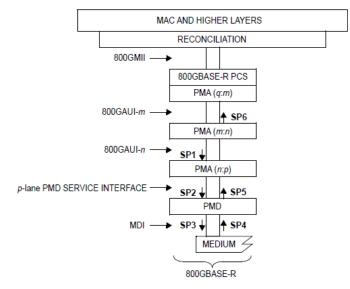
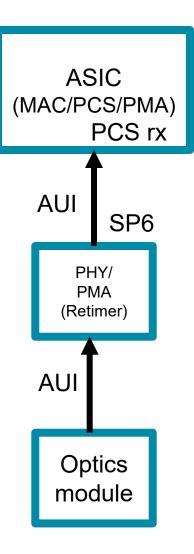



Figure 169-5-800GBASE-R Skew points for a PHY with multiple 800GAUI-n

Adee's proposed remedy (9.6ns down from 15ns):

SP5	Module PMD Rx	128	≈3852 1088	145 ≈41	As in PMD Tx
SP6	Module PMA and external PMA	256	≈4250 1344	160 ≈50.6	Two PMAs, each with Rx and Tx

At PCS RX

- ASIC Internal contribution
 - 3ns, same as SP1 contribution
- Board skew contribution
 - 2ns per 12" of PCB, allocate 6" of delta for a port?
 - So assume 1ns.
- Total PCS skew is 4ns
- Think we should pad it by 4ns, so proposing 8ns total budget
- You could make the case that we don't specify this at all since this contribution is all internal to the ASIC!

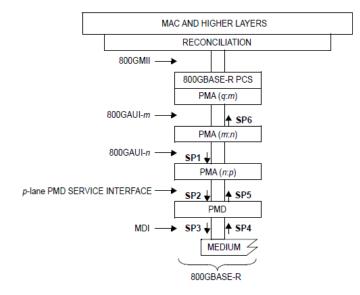


Figure 169-5-800GBASE-R Skew points for a PHY with multiple 800GAUI-n

Adee's proposed remedy (2.4ns down from 20ns):

SP6	Module PMA and external PMA	256	≈4250 1344	160 ≈50.6	Two PMAs, each with Rx and Tx
PCS input	Rx PCS/PMA	64	≃4781 1408	180 ≈53	PMA Rx

Summary

- I think both SP1 and SP6 should be 15ns each for total skew
 - SP6 can be revisited when we better understand the optics PMA skew budget
- PCS rx skew contribution should be set to 8ns
- We would need to investigate dynamic skew..no recommendations yet

Thanks!