Further considerations on IL motion and implications for other parameters

Dieter Schicketanz / Reutlingen University

Matthias Fritsche / HARTING Technology Group

Peter Fischer / BKS Kabel-Service AG

12/14/2022

Agenda

- Remarks on last motion to IL
- Backward and connector compatibility
- 2 Amp issues
- Proposal to improve the motion formula

Remarks on last motion to IL

A link (channel) is usually defined by:

$$(4,05) \times (1,82\sqrt{f} + 0,0091 \times f + \frac{0,25}{\sqrt{f}}) + 5 \times (0,02\sqrt{f})$$

$$(4,05) \times (1,82\sqrt{f} + 0,0091 \times f + \frac{0,25}{\sqrt{f}}) + 5 \times (0,02\sqrt{f})$$

$$(4,05) \times (1,82\sqrt{f} + 0,0091 \times f + \frac{0,25}{\sqrt{f}}) + 5 \times (0,02\sqrt{f})$$

- Cable IL/100m (2) + number of connectors and respective losses (3, 4)
- The upfront factor (1) describes the length and the derating of the cords and the respective length

Remarks on last motion to IL

 The formula voted on looks similar but does not represent a cable while hiding the length portions

```
IL(f() = 4.92*SQRT(f(MHz)+0.04*f(MHz)+0.8/SQRT(f(MHz)+5*0.02*SQRT(f(MHz)))
```

Result:

- Other/ shorter lengths cannot be extracted
- How will PSAACR-F be defined?
- Evaluation of short and long length disturbances due to PSAACR-F in real installations cannot be executed
- How to develop planning and certification of installations?

Backward and connector compatibility

Backward compatibility is completely missing.

Starting frequency

Connector compatibility

Wire diameter

2 Amp issues

There is a discussion with ISO/IEC that all single pair links should be capable to carry 2 Amps. This was initiated and is promoted by IEEE 802.3 PDCC

(see https://www.ieee802.org/3/ad_hoc/PDCC/public/IEEE_802d3_contribution_to_SC25_Sept_2022.pdf)

How are we going to deal with this?

A presentation about these issues will be given during the January interim.

Proposals to improve the motion formula

We should ask our cable colleagues in IEC TC46 if there is a cable which can fulfil our motion formula.

Graber's formula was easier to understand for cabling experts.