IEEE 802.3dg – Noise Environment Definition Piergiorgio Beruto

IEEE 802.3 - Public Information

Overview

- What do we mean by noise environment?
 - Noise has many flavors (depending on the source) and can be modeled in several ways, e.g.
 - White [random, uniform, e.g., Johnson Noise]
 - Gaussian [sum of independent random sources, e.g., Jitter]
 - Impulse [non-stationary, short duration, high peaks, e.g., switching a motor on/off]
 - Tone [stationary CW at specific frequencies, e.g., RF generators]
 - Different applications/environments are typically dominated by different combinations of noise sources
 - The characterization of these sources defines the noise environment
- Why do we care?
 - The kind and amount of noise we have to deal with is critical for the PHY receiver design and may affect the system architecture significantly
 - Noise environments are regulated, and products are tested for conformance
 - E.g., IEC61000-4-4 (EFTs), IEC61000-4-6 (RF immunity)

Applications

- What application should we consider for 802.3dg?
 - Objective #3: do not preclude meeting FCC and CISPR EMC requirements
- These environments are mainly dominated by impulse and RF noise
- IEC61000-4-4 specifies "Electrical fast transient (EFT) / burst immunity test"
 - That is, immunity to impulse noise
- IEC61000-4-6 specifies "Immunity to conducted disturbances, induced by radio-frequency fields"
 - That is, immunity from RF aggressors

Noise environment definition

Immunity to RF disturbances

Conducted Immunity (CI)

- IEC61000-4-6 models the RF noise in industrial environments as follows
 - Continuous Wave (CW) simulating "intentional" RF transmitters in the frequency range from 150 KHz to 80 MHz.
 - Some OEM requires testing above 80 MHz as well
 - The CW is coupled (CM) to the channel using clamps or CDNs (preferred)
 - The amplitude of the CW is calibrated to be a specific value measured at the MDI
 - during the test, the amplitude is 80% AM modulated by a 1 kHz sine wave
 - The base (unmodulated) amplitude is selected among three classes, according to the application
 - Class 1 \rightarrow 1 V_{rms} (Low EM radiation environment)
 - Class 2 \rightarrow 3 V_{rms} (Moderate EM, typical commercial env)
 - Class 3 \rightarrow 10 V_{rms} (Severe EM, typical **industrial** env)
 - The CW sweeps the frequency range in 1% steps and a minimum of 0.5 s of dwell time (typ. 2 s)

Cl effect on a 10BASE-T1S/M link (borrowed example)

• Doing the math:

- 10 V_{rms} <u>calibrated</u> at the MDI + 80% modulation
- Considering 43 dB of MC loss (TCTL)
- Taking some margin for tolerances/non-idealities
- Let's have a look at the eye diagrams
 - DISCLAIMER: the presenter is <u>NOT</u> suggesting using eye diagrams as a metric for deriving the receiver performance. But it is a quick & handy way to have a visual feeling.
 - Using the simulations presented already for the TX model <u>https://www.ieee802.org/3/da/public/050422/beruto_3da_20220502_tx_model.pdf</u>
 - Adding a CW of 400 mV_{p-p} at 11 MHz (in-band)

 \rightarrow 51 V_{p-p}

 \rightarrow 360 mV_{p-p}

 \rightarrow 400 mV_{p-p}

(max, CM)

(max, DM)

(max, DM)

onsemi

Eye diagrams w/ CW noise

Noise environment definition

Electrical Fast Transients (EFT)

EFT (Electrical Fast Transients)

- IEC61000-4-4 models the impulse noise in industrial environments as follows
 - Calibrated pulses of up to 2kV (CM)
 - Duration: 50 ns (50% to 50%)
 - Rise time: 5 ns
 - Burst rate: 100 kHz (10 µs)
 - Burst duration: 15 ms
 - Burst repetition: 300 ms
- Pulses are calibrated on a 50 Ω load at different peak levels (classes)
 - 250 V (also typical for automotive)
 - 500 V
 - 1 kV
 - 2 kV

EFT effect on a 50 \Omega link (1)

- Model of the impulse noise generator, following IEC61000-4-4 requirements
- Calibrated on a 50 Ω load
- Coupled via a 33 nF capacitor
- 2 kV peak pulse (highest class)

• Considering a mode conversion loss of 43 dB

- i.e., Transverse Conversion Transfer Loss (TCTL)
 - DM voltage generated by injected CM voltage at the opposite end of the segment (or vice-versa)
 - Not to be confused with TCL which is the CM voltage reflected back at the injection point
- For simplicity, flat on all frequencies \rightarrow DM pulse is the CM pulse lowered by 43 dB
 - In reality, MC degrades at higher frequencies, but we assume an LPF in the receiver to compensate
 - This is just an estimation!

onsemi

EFT effect on a 50 \Omega link (3)

• Differential mode noise is way higher than the nominal TX amplitude (1 V_{p-p})

EFT effect on a 50 Ω link

(4)

- In real-life, EFT pulses are unlikely that smooth!
- This is an example of what you could see on a non-ideal system.

See also https://www.ieee802. org/3/cg/public/Mar2 017/Graber_3cg_01a _0317.pdf

<u>https://www.ieee802.</u>
<u>org/3/NGEBASET/pu</u>
<u>blic/entnoise/Shirani</u>
<u>NGEABT_03_0315.p</u>
<u>df</u>

How to deal with EFT then?

- Work is needed to explore what the architecture can and cannot compensate for
- The EFT test is a system-level test, including the higher layer protocols
 - It is allowed, for example, to have re-transmissions to meet the BER requirements
 - The bursts are limited in time (15 ms) and repeat infrequently (300 ms)
 - Most applications can tolerate this

Conclusions

- According to 802.3dg objectives, we shall not preclude meeting FCC and CISPR EMC requirements
 - Propose to follow IEC61000-4-4 and IEC61000-4-6 to define the noise environment for 10BASE-T1M
 - Propose to define multiple receiver performance classes (as in IEC61000-4-6)
 - Work is required to deal with EFT, or solve the problem in the higher layers (re-transmissions)
- The challenges for meeting the receiver's performance have been presented
 - Propose to define a minimum receiver model to compare with
 - Propose to define a receiver performance metric

Onsemí

Intelligent Technology. Better Future.

Follow Us @onsemi

www.onsemi.com