

AHEAD OF WHAT'S POSSIBLE™

Hybrid Motor Cable Evaluation

Michal Brychta, Analog Devices Hector Alberti Arroyo, Analog Devices Jürgen Funkhänel, Sick AG Marc Lanigra, Sick AG

23. November 2022

IEEE 802.3dg Task Force

Agenda

Application

Cables

- Structure
- Measured parameters
- Noise Coupling
 - Motor signal
 - Setup
 - Standard cable performance
 - Advanced cable performance
- ▶ 10BASE-T1L
 - Setup
 - Performance
- Summary Conclusion

Application / Setup

3

Hybrid cables

Cables

Hybrid cable

- Cable for connecting of motor setup incl. encoder and positioner with motor drive / controller
- Cable includes power & brake lines together with communication lines within one cable

Standard Hybrid Cable

- ▶ Length: 5 m & 100 m
- Configuration:
 - [4G1,5+(2x0,75)+(AWG22)]

Advanced Hybrid Cable

- Length: 100 m
- Configuration: G2,5+(3xG2,5)+(2x1)+(2x22AWG)

Cable Insertion Loss

Cable Return Loss

Cable Impedance

— 100m Standard Cable — 100m Advanced Cable

Noise coupling Standard hybrid cable

Motor Power Signals

- 2 out of 3 motor power signals
- Captured with a with high voltage 200:1 oscilloscope probes
- 16kHz / 62.5us period 3-phase PWM
- Amplitude approx. 550V
- ▶ Slew rate approx. 5.5kV/us
 - Full level reached within approx. 100ns
 - New/future applications up to 10kV/us
- Motor powered, idle, not turning
 - The phases switch nearly at the same time, a few ns in-between only.

Setup for Noise Measurement

Motor Side Connection

- Terminated 102 ohm differential
- 25 ohm common mode to motor chassis
- Oscilloscope ground referred to motor chassis
- Oscilloscope up to 5 GSamples/s
- Single-ended probe BW 500MHz, 3.9pF/10MΩ
- Differential active probe, BW 1.5GHz, 1pF/200kΩ

Drive Side Connection

- Terminated 100 ohm differential
- 25 ohm common mode to ground

Cable A "Standard Hybrid Cable" Motor power off, setup / background noise

- Ch1 (yellow) and Ch2 (blue) single ended, common mode, from communication signals to ground
- Common mode noise ~200mVpp

- Ch3 (purple) differential probe between communication signals
- Differential noise ~50mVpp

Cable A "Standard Hybrid Cable" Motor powered, idle, not turning

- Bursts of noise by the edges of PWM motor power signals
- Ch1 (yellow) and Ch2 (blue) single ended, common mode, from communication signals to ground
- Common mode noise ~10Vpp

- Ch3 (purple) differential probe between communication signals
- Differential noise ~400mVpp

Cable A "Standard Hybrid Cable" Motor powered, idle, not turning - detail

- Time zoomed to detail around an edge of the PWM motor power signals
- Ch1 (yellow) and Ch2 (blue) single ended, common mode, from communication signals to ground

 Ch3 (purple) differential probe between communication signals

Cable A "Standard Hybrid Cable" Motor running, changing direction

(Clockwise – Anticlockwise – Clockwise ...)

- Bursts of noise by the edges of PWM motor power signals
 - Edges of the PWM 3-phases not aligned as the motor is controlled to move
- Ch1 (yellow) and Ch2 (blue) single ended, common mode, from communication signals to ground
- Common mode noise ~10Vpp

- Ch3 (purple) differential probe between communication signals
- Differential noise ~400mVpp

Cable A "Standard Hybrid Cable" Motor running, changing direction – FFT

- Differential probe between communication signals
- ▶ FFT, Hanning, logrms
- Freq zoom shows harmonics of the 16kHz PWM motor power signals

Noise coupling Advanced hybrid cable

Cable B "Advanced Hybrid Cable" Motor powered, idle, not turning

- Bursts of noise by the edges of PWM motor power signals
- Ch1 (yellow) and Ch2 (blue) single ended, common mode, from communication signals to ground
- Common mode noise ~400mVpp

- Ch3 (purple) differential probe between communication signals
- Differential noise ~50mVpp

Cable B "Advanced Hybrid Cable" Motor running, changing direction

- Bursts of noise by the edges of PWM motor power signals
 - Edges of the PWM 3-pahses not aligned as the motor is controlled to move
- Ch1 (yellow) and Ch2 (blue) single ended, common mode, from communication signals to ground
- Common mode noise <100mVpp

- Ch3 (purple) differential probe between communication signals
- Differential noise ~50mVpp

10BASE-T1L performance

Note that we evaluated 10BASE-T1L NOT 100BASE-Txx !!!

Setup for 10BASE-T1L Performance

10BASE-T1L / Cable / System Connections

Drive Side

Motor Side

MDI Capacitively Coupled

MDI Transformer Coupled

Motor Control Hybrid Cable	10BASE-T1L Coupling	10BASE-T1L Amplitude	ADIN1100 MSE	ADIN1100 Slicer error	Errors / Frames	Frame Error Rate
Standard	Capacitive	2.4V	-31dB	0.81	78 / 50,000	0.16%
Standard	Capacitive	1V	-21dB	0.93	4,000 / 50,000	8.00%
Standard	Transformer	2.4V	-32dB	0.30	0 / 50,000	0.00%
Standard	Transformer	1V	-25dB	not recorded	3650 / 50000	7.30%
Advanced	Capacitive	2.4V	-37dB	0.10	0 / 50,000	0.00%
Advanced	Capacitive	1V	-32dB	0.18	0 / 50,000	0.00%

- ▶ The primary purpose of this activity was to see performance of 10BASE-T1L communication in this application
 - Reliable communication on "standard" hybrid cable only with transformer coupled ADIN1100 MDI
 - Reliable communication on "advanced" hybrid cable with both capacitive and transformer coupled ADIN1100 MDI
- Presented to IEEE802.3dg as some of the results may be of interest / relevant to the 100BASE-TL
 - Hybrid motor cable already identified as one of the target applications
 - Couple of cables measured in lab in context of this application
- Outcome
 - Various cables with different internal structure available for the same application
 - The cable structure has significant impact on the noise coupled between motor power and communication
- Suggestions
 - Check multiple cables and find worst applicable case
 - Measure the cable internal coupling using a network analyzer
 - Consider / try to capture worst case scenario motor driving signal (max voltage, max current, max rise/fall slew rate)
 - Consider extending measurement beyond 50MHz bandwidth
 - Depending on modulation chosen, 100BASE-T1L may need to be assessed in wider then 50MHz

Thank You

Questions?