PHY Analysis Relative to Link Segment

G. Zimmerman

CME Consulting/APL Gp, Cisco, CommScope, Marvell, OnSemi, SenTekSe IEEE P802.3dg ad hoc

Introduction

- Suggested Link Segment Parameters have been presented in <u>graber_3dg_01_08302022.pdf</u> and <u>Schicketanz_3dg_01a_10122022.pdf</u>
- The Task Force can help progress cabling standards work by providing guidance on frequencies used and identifying parameters to be improved or mitigated
- This presentation provides preliminary PHY analysis to identify bandwidth needs and limiting parameters
 - It is NOT a PHY baseline proposal at this time

PHY Modeling

- Desire to be implementation independent use theoretical limitations, established, proven technique for Salz modeling
 - Extensible to PAM/QAM, shown to be equivalent to geometric SNR for multicarrier
 - Experience shows > 6 dB SNR margin needed, 8 dB reasonable, more than 10 dB often not realized
 - Relative to uncoded SNR (12.27 dB SNR gap)
 - Coding Gain does not change shape of margin curve
 - Good indication that a system can be designed provided implementation-specific issues satisfied – not necessarily that any given PHY design with a given modulation works on a link segment
- Model includes residual components from echo & receiver noise
 - Assume high degree of echo cancellation, good AFE
 - For this presentation use receiver parameters within technology, but high enough not to limit performance – focus on link segment - 50 dB echo, 12 bits ENOB (overkill)

Link Segment Transmission Models - Graber

- Insertion Loss: (Graber slide 5) 5*(0.98*SQRT(f_{MHz})+0.01*f_{MHz}+0.2/SQRT(f_{MHz}))+5*0.02*SQRT(f_{MHz})
- Return Loss (Graber slide 10, secondary factor choices of receiver parameters) 9+8* f_{MHz} dB $(f_{MHz} < 0.5 \text{ MHz})$, 13 dB $(0.5 \le f_{MHz} < 20 \text{ MHz})$ 13-10*LOG10(f_{MHz} /20) $(20 \le f_{MHz} \le 100 \text{ MHz})$
- Alien NEXT: (Graber slide 13)
 - $-10* \text{LOG10}(6*10^{(-7+\text{LOG10}(f_{MHz}/10))}+5*2*10^{(-7.3+1.7*\text{LOG10}(f_{MHz}/10))})$
 - Note Clause 146 PSANEXT loss was 37-17log10(f/20) dB, 18.5 dB higher
- Alien FEXT: (Clause 146, Eqn 146-16)

 $IL(f_{MHz})$ + 38-18*LOG10(f_{MHz} /20)

Suggest contributions on scaling alien FEXT for length and connector count on links targeted for 100BASE-T1L.

Likely different from unshielded twisted pair LAN or telephony behavior, due to reported dominant coupling at connectors and mode conversion due to spring connector untwist

Optimal PHY bandwidth ~ 20 to 30 MHz

- PAM4 to PAM 5

 PAM 3 pinched off by ANEXT
- Between 5 dB and 10 dB improvement on alien crosstalk + coding gain needed

PAM/QAM/Multicarrier: No Magic in Line Codes

- Likely to want to enable 10BASE-T1L/100BASE-T1L PHYs
 - Implementation advantage to PAM
- PAM provides best use of baseband, lowest complexity for low number of levels
 - PAM 2, 3, 4, 5 can be "multiplier free" echo cancellation, DFE structures
 - Well-known, well-optimized for Ethernet
 - Low Latency
 - Low peak-to-average ratio (good for intrinsic safety applications)

PAM Cabling Bandwidth beyond Nyquist Supports SNR

IEEE P802.3dg 100 Mb/s Long-Reach SPE Task Force

Alien Crosstalk limits Performance and Bandwidth

- Potential Improvement:
 - Reduction in Alien Crosstalk (see Graber suggestions)
 - Addition of coding gain (PHY complexity, more levels at the same baud rate)
 - Reduction in Insertion Loss

(or combination) is needed to reach our objectives

(PHY AFE parameters, voltage levels, or return loss/echo cancellation won't do it)

AFEXT Dominates, Data Needed

- AFEXT, if like clause 146, dominates AFEXT
 - 17.5 dB higher at 20 MHz
 - Likely unrealistic due to shorter link, fewer connections
- Need AFEXT contributions
 - Equal length links, 500m,
 - 5 connectors
- May need near/far AFEXT mitigation

Without AFEXT, it's a little different story

Possible Scenario – AFEXT similar in level to ANEXT (reduce AFEXT 18.5 dB, like ANEXT rel to CI 146)

Conclusions

- Insertion loss & Alien Crosstalk functions will determine baseline PHY specifications
 - Proposals from <u>graber_3dg_01_08302022.pdf</u> are a good start
 - Need to get consensus on ANEXT/AFEXT models
 - Determines whether FEC is needed for crosstalk noise
 - Validating measurements will important
- Regardless, optimal Nyquist bandwidths are between 20 and 30 MHz used
 - 'Rule of thumb' would then specify out to at least 40 MHz (25% beyond Nyquist)
- Optimal noise performance is in favor of PAM 4
 - In low noise, PAM 3 could be used, and long reach/high freq noise, PAM 5

THANK YOU