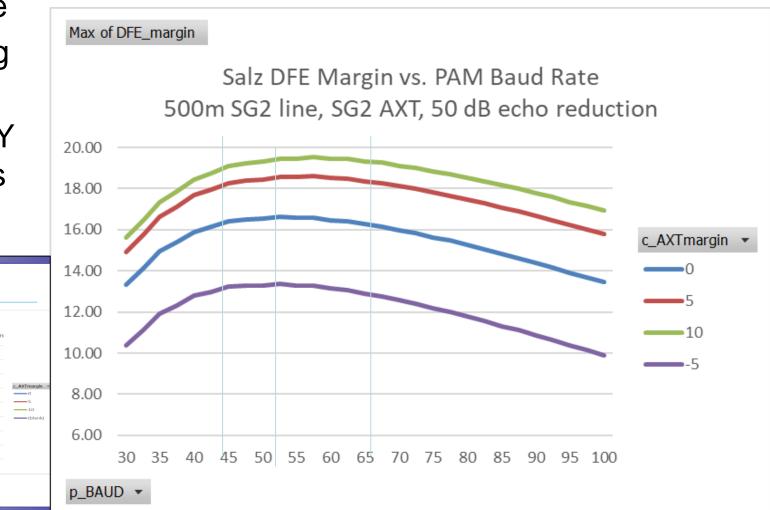
Preliminary PHY Analysis on Updated Link Segment Specifications in graber_3dg_xx_03152023

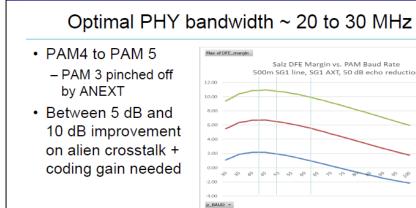
G. Zimmerman CME Consulting/APL Gp, Cisco, CommScope, Marvell, OnSemi, SenTekSe IEEE P802.3dg ad hoc 3/15/2023

Introduction

- New Link Segment Parameters have been provided in graber_02_03152023 and graber_03_03152023.
- This presentation provides preliminary PHY analysis to help consider those parameters
 - It is NOT a PHY baseline proposal at this time

PHY Modeling

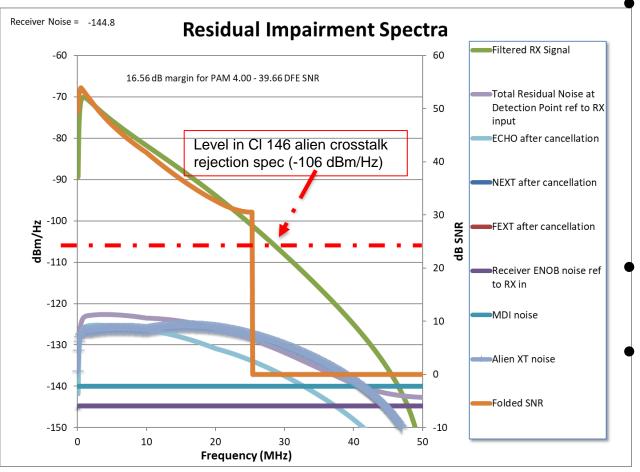

- Modeling is as previously in zimmerman_3dg_01_11022022
 - Desire to be implementation independent use theoretical limitations, established, proven technique for Salz modeling
 - Extensible to PAM/QAM, shown to be equivalent to geometric SNR for multicarrier
 - Experience shows > 6 dB SNR margin needed, 8 dB reasonable, more than 10 dB often not realized
 - Relative to uncoded SNR (12.27 dB SNR gap)
 - » Coding Gain does not change shape of margin curve
 - Good indication that a system can be designed provided implementation-specific issues satisfied not necessarily that any given PHY design with a given modulation works on a link segment
 - Model includes residual components from echo & receiver noise
 - Assume high degree of echo cancellation, good AFE
 - For this presentation use receiver parameters within technology, but high enough not to limit performance focus on link segment - 50 dB echo, 12 bits ENOB (overkill)


Link Segment Transmission Models – IL & Alien Crosstalk from graber_03_03152023, slide 8

- Insertion Loss: $5.42*SQRT(f_{MHz})+0.044*f_{MHz}+1.76/SQRT(f_{MHz}))+5*0.02*SQRT(f_{MHz})$
- Return Loss: (graber_01_03152023 slide 14)
- 9+8* f_{MHz} dB $(f_{MHz} < 0.5 \text{ MHz})$, 13 dB $(0.5 \le f_{MHz} < 20 \text{ MHz})$ 13-10*LOG10 $(f_{MHz}/20)$ $(20 \le f_{MHz} \le 100 \text{ MHz})$
- Alien NEXT: 55 + 5*N dB, $(f_{MHz} < 10 \text{ MHz})$, 55 + 5*N -15*LOG10 $(f_{MHz}/10)$ (10 MHz $\leq f_{MHz}$) - N = 0 for *IL(20 MHz)* < 16 dB, N = 1 for 16 dB \leq *IL(20 MHz)* < 21 dB, N= 2 for 21 dB \leq *IL(20 MHz)*
- Alien FEXT: (PSAACR-F) 55 + 5*N dB, (f_{MHz} < 2 MHz), 41 + 5*N -20*LOG10(f_{MHz} /10) (2 MHz ≤ f_{MHz})
 - N = 0 for IL(20 MHz) < 16 dB, N = 1 for 16 dB $\leq IL(20 \text{ MHz}) < 21 \text{ dB}$, N = 2 for 21 dB $\leq IL(20 \text{ MHz})$

Optimal PHY bandwidth remains 20 to 30 MHz

- PAM3 to PAM5 all viable
- No further AXT or coding gain needed
- Sufficient margin for PHY implementation tradeoffs



3/15/2023 - G. Zimmerman

Zimmerman_3dg_01_11_02_2022

Relative level of Alien Crosstalk is now near optimistic implementation levels

Example shows alien crosstalk similar to optimistic cancelled echo levels

- Minimal value on further reduction of alien noise
- Implementation margin for complexity reduction
- Noise level is almost 20dB less than CI 146
- Alien crosstalk is less limiting to overall performance
- BUT, low residual noise levels come with increased risk of sensitivity to nonstationary, EMC, and unmodeled noise

Conclusions

- New proposals from Graber provide needed improvement in alien crosstalk margin
- PAM 3, 4, and 5 are all viable with the new proposal

THANK YOU