

Auto-Negotiation of Voltage Level

Michal Brychta Philip Curran Brian Murray Jacobo Riesco

10/100BASE-T1L Technology Ability Bits in Draft 2.0

- ► The 10/100BASE-T1L technology ability field bit assignments are shown in the table below
 - The 10BASE-T1L technology bits are as specified in Table 98B-1
 - The 100BASE-T1L technology bits are as proposed in IEEE P802.3dg/D2.0

Bit	Selector Description
Α9	10BASE-T1L capability
A10	100BASE-T1L ability
A21	100BASE-T1L increased transmit/receive level ability
A23	10BASE-T1L increased transmit level request
A24	10BASE-T1L increased transmit/receive level ability
A25	10BASE-T1L EEE ability

- The 100BASE-T1L technology bits are not independent
 - To bring up a 100BASE-T1L link at 2 Vpp level both link partners needs to set both A10 and A21
 - If either link partner does not set bit A21, then the link comes up at 1 Vpp

Why 100BASE-T1L is Different from 10BASE-T1L

- 10BASE-T1L used too many (4) technology ability bits
 - The technology ability field is shared by all PHYs that use clause 98 auto-negotiation
 - This includes all T1 PHYs, all T1L PHYs, all T1S PHYs and all asymmetric T1 / V1 PHYs
 - There are only 27 technology ability bits available in the base page
 - We are rapidly approaching the point of requiring additional next page exchange during auto-negotiation
 - The consensus in the 802.3dg working group is that we should not use technology ability bits unnecessarily
- 10BASE-T1L is inconsistent with every other 802.3 PHY in having both an ability bit and a request bit (for the higher voltage level)
 - For every ability in every other PHY the ability bit is set to indicate that the PHY has that ability
 - The link settings are then determined by a specified priority resolution process
- 10BASE-T1L is inconsistent with all of the recent 802.3 PHYs in auto-negotiating EEE
 - All recent 802.3 PHYs except 10BASE-T1L negotiate support for EEE during training
 - There is no need for this ability to be known prior to link establishment

Proposal for Further Changes in Technology Bits

- We propose to use 3 technology bits to specify a category
 - For example, BASE-T1L would be a separate category
 - Within a category the 12 currently unassigned technology bits would be category-specific
 - This proposal is described in detail in a separate presentation
- In IEEE P802.3dg/D2.0 auto-negotiation of the voltage level for 100BASE-T1L operates as follows:
 - To bring up a 100BASE-T1L link at 2 Vpp level both link partners needs to set both A10 and A21
 - If either link partner does not set bit A21, then the link comes up at 1 Vpp
 - Setting bit A21 without setting bit A10 is not allowed
- We propose to make the two 100BASE-T1L technology bits independent
 - A 100BASE-T1L PHY may support 1 Vpp only, 2 Vpp only or both 1 Vpp and 2 Vpp
 - If a PHY supporting 1 Vpp only is connected to a PHY supporting 2 Vpp only, then the link will not come
 up
 - If two PHYs that support both 1 Vpp and 2 Vpp are connected then 2 Vpp will be resolved
 - If a PHY supporting both 1 Vpp and 2 Vpp is connected to a PHY supporting 2 Vpp only, then the link will come up at 2 Vpp
 - If a PHY supporting both 1 Vpp and 2 Vpp is connected to a PHY supporting 1 Vpp only, then the link will come up at 1 Vpp

Proposed 10/100BASE-T1L Technology Ability Bits

► The proposed 10/100BASE-T1L technology ability field bit assignments are shown in the table below:

Bit	Selector Description				
A7, A8, A26	Category selection. 000 NULL category is used by existing PHYs including 10BASE-T1L PHYs 010 BASE-T1L category can be used by 10/100BASE-T1L PHYs				
А9	10BASE-T1L capability				
A10	100BASE-T1L standard transmit/receive level ability				
A11	100BASE-T1L increased transmit/receive level ability				
A23	10BASE-T1L increased transmit level request				
A24	10BASE-T1L increased transmit/receive level ability				
A25	10BASE-T1L EEE ability				

- ► Existing 10BASE-T1L PHYs will ignore the category selection and the 100BASE-T1L abilities
 - New 10/100BASE-T1L PHYs will advertise their 10BASE-T1L abilities exactly as before

Support for Advanced Physical Layer (APL)

- ► APL bring the benefits of Ethernet to the field of process automation
 - APL applications were some of the earliest adopters of 10BASE-T1L
 - Any changes that we propose for 100BASE-T1L must continue to support the requirements of APL applications
 - APL has its own 10 Mb/s standard that is based on IEEE Std802.3 but imposes certain restrictions to support the intended applications
 - We will paraphrase here see IEC TS 63444 for the exact requirements
 - A "trunk port" can only operate at 2.4 Vpp
 - A "spur port" can only operate at 1 Vpp
 - A trunk port should not enable communication when connected to a PHY that specifies 1 Vpp operation – but it can still bring up a link
 - A spur port should not enable communication when connected to a PHY that requests 2.4 Vpp operation – but it can still bring up a link
 - We expect similar restrictions for APL at 100 Mb/s

10/100BASE-T1L Ability Advertisement for APL

► The following table shows the proposed ability advertisement settings for PHYs supporting both 10BASE-T1L and 100BASE-T1L

Technology Ability bits		Segment class				
		Trunk Port		Spur Port		
		10BASE-T1L	100BASE-T1L	10BASE-T1L	100BASE-T1L	
А9	10BASE-T1L capability	1		1		
A10	100BASE-T1L standard transmit/receive level ability		0		1	
A11	100BASE-T1L increased transmit/receive level ability		1		0	
A23	10BASE-T1L increased transmit level request	1		0		
A24	10BASE-T1L increased transmit/receive level ability	1		0		
A25	10BASE-T1L EEE ability	0		0		

► Note that a 100BASE-T1L link will not be established between a trunk port and a spur port

Other Applications May Require Operation at 2 Vpp

- ► The requirement to have certain ports decline to communicate at 1 Vpp is not unique to APL
 - Many industrial communication links are subject to high levels of interference
 - Applications in areas such as heating and air conditioning, elevators, trains, and so on may have similar characteristics
 - In all these cases it may be desirable to support 2 Vpp only operation
 - The approach adopted in 10BASE-T1L of bringing up the link at 1 Vpp even in cases where the application would prefer to specify 2 Vpp only operation is very burdensome
 - Links in APL are actively managed every time the link comes up the resolved voltage is checked, and communication is disabled if the voltage is incompatible with the application requirements
 - Do we really want to place the burden of active management on every application where 2 Vpp only operation is required?
 - The proposed technology ability bit assignments allow applications to specify 2 Vpp only operation without the need for active management
 - The link will simply not come up if the link partner does not support 2 Vpp

Priority Resolution

- ► It is proposed that when both link partners support both 1 Vpp and 2 Vpp, 2 Vpp will have priority
 - It would seem illogical to prioritize 1 Vpp operation since this PHY is primarily targeting longer reach

Handling of Voltage Mismatch

We need to decide about how to handle cases like the one shown in the following table

Technology Ability bits		Local PHY		Remote PHY	
		10BASE-T1L	100BASE-T1L	10BASE-T1L	100BASE-T1L
А9	10BASE-T1L capability	1		1	
A10	100BASE-T1L standard transmit/receive level ability		0		1
A11	100BASE-T1L increased transmit/receive level ability		1		0
A23	10BASE-T1L increased transmit level request	1		0	
A24	10BASE-T1L increased transmit/receive level ability	1		0	
A25	10BASE-T1L EEE ability	0		0	

▶ In this case a 100BASE-T1L link cannot be established but it would be possible to bring up a 10BASE-T1L link at 1 Vpp

Options for Handling of Voltage Mismatch

- ▶ One option is to treat 100BASE-T1L at 2 Vpp and 100BASE-T1L at 1 Vpp as if they are two different technologies
 - In that case the highest common denominator (HCD) technology associated with the table on the previous slide is 10BASE-T1L and the link will come up at 1 Vpp
- ► Another option is to treat 100BASE-T1L at 2 Vpp and 100BASE-T1L at 1 Vpp as two different configurations of the same technology in a similar way to the way we handle LEADER / FOLLOWER configuration
 - In that case the HCD technology associated with the table on the previous slide is 100BASE-T1L
 - The clause 98 Arbitration sequencer of Figure 98-7 will enter the AN GOOD CHECK state, but the variable incompatible_link will be set true, as would be the case if both PHYs are forced to be LEADER, for example
 - Auto-negotiation will restart repeatedly until management intervenes or downshift handles the situation