

PCS Running Disparity Comment No. 231

Brian Murray Philip Curran Jacobo Riesco

Introduction

- ▶ 100BASE-T1L uses PAM-2 during training
 - PAM-2 has a greater SNR than PAM-3 and thus an advantage during start-up and blind acquisition as it is easier to open the eye and lock the descrambler
 - A table of 16 possible non-negative disparity (NND) 4b6B PAM-2 6-tuples are used with a scheme to ensure control of running disparity and randomization of the transmitted signal
 - The PCS Transmit function uses bits Sd_n[3:0] to select the NND code-group; a balanced code-group is generated by transmitting either the NND code-group or the inverse of the NND code-group, based on the current running disparity
 - This scheme is described in section 190.3.4.3 4B6B encoding of the draft standard
- ► The number of PAM-2 NND 6-tuples used during training is 16, and is much less than the 256 PAM-3 NND 6-tuples used during normal operation
 - This results in some spurs in the spectrum of the transmitted signal during training
 - And in turn a different set of DFE and echo canceller coefficient in training compared to data
 - The PHY Control state diagram (Figure 190–18) includes a PAM3_TUNING state to allow for the adjustment of the coefficients after we transition from PAM-2 to PAM-3
 - The results presented to date appear to show that neither of the above is a significant problem
- ► However, there is a difference between the running disparity bound during PAM-2 training (± 7) and normal operation (± 5)

PAM-2 4b6B NND Code-Groups

► Table 190–8 lists the 4b6B NND code-groups used in PAM-2 training

Draft Amendment to IEEE Std 802.3-2022 IEEE P802.3dg 100 Mb/s Long-Reach Single Pair Ethernet Task Force IEEE Draft P802.3dg/D2.0 29th July 2025

Table 190-8—4B6B NND code-groups

The entry [0010] = [-111111] has a disparity of 4

Sdn[3:0]	$\{TA_n, TB_n, TC_n, TD_n, TE_n, TF_n\}$
0000	-1 1 -1 1 -1 1
0001	-1 -1 1 1 -1 1
0010	-111111
0011	1 -1 1 -1 1 1
0100	-1 1 -1 1 1 -1
0101	111-11-1
0110	-1 1 1 -1 -1 1
0111	-1 1 -1 -1 1
1000	1 1 1 1 -1 -1
1001	-1 -1 -1 1 1 1
1010	-1 -1 1 -1 1 1
1011	-1 -1 1 1 1 -1
1100	11-111-1
1101	-1 1 1 -1 1 -1
1110	-1 1 1 1 -1 -1
1111	11-1-111

Bin Row	Sd _n [3:0]	{ TA _n	TB_n	TC_n	TD_n	TE _n	TF_n }		Pattern	Disparity	Base_3 Index	In 8b6T
0	0000	-1	1	-1	1	-1	1		-+-+-+	0	182	No
1	0001	-1	-1	1	1	-1	1		++-+	0	74	Yes
2	0010	-1	1	1	1	1	1	4	-++++	4	242	N o
3	0011	1	-1	1	-1	1	1		+-+-++	2	548	Yes
4	0100	-1	1	-1	1	1	-1		-+-+-	0	186	Yes
5	0101	1	1	1	-1	1	-1		+++-+-	2	708	Yes
6	0110	-1	1	1	-1	-1	1		-+++	0	218	Yes
7	0111	-1	1	-1	-1	1	1		-+++	0	170	Yes
8	1000	1	1	1	1	-1	-1		++++	2	720	Yes
9	1001	-1	-1	-1	1	1	1		+++	0	26	No
10	1010	-1	-1	1	-1	1	1		+-++	0	62	Yes
11	1011	-1	-1	1	1	1	-1		++-	0	78	Yes
12	1100	1	1	-1	1	1	-1		++-+-	2	672	Yes
13	1101	-1	1	1	-1	1	-1		-++-+-	0	222	Yes
14	1110	-1	1	1	1	-1	-1		-+++	0	234	Yes
15	1111	1	1	-1	-1	1	1		++++	2	656	Yes

84
Copyright © 2025 IEEE. All rights reserved.
This is an unapproved IEEE Standards draft, subject to change.

Table: showing the pattern, disparity and base_3 index for each row

Range of Running Disparity in Training and in Data

- ► Range of Running Disparity
 - The range of running disparity for PAM-3 8b6T is ± 5
 - For 8b6T data the running disparity bound at the 6-tuple boundary is ±3
 - We do have some zero disparity codes starting with (+ + and (- -
 - E.g. (++---+) or (--+-++); 8b6T does not use the (+++---) or (---+++) codes
 - Thus, the instantaneous disparity can be in the range ± 5
 - The range of running disparity for the PAM-2 training is ± 7
 - All but one of the NND 4b6B 6-tuples have a disparity of 0 or 2, these would result in running disparity bound at the 6-tuple boundary of ±2
 - However, the single NND 6-tuple with disparity 4 means running disparity bound at the 6-tuple boundary is ±4
 - And as there is a zero disparity code (+ + + - -) the instantaneous disparity can be ± 7
 - So we can have sequences of 7 +'s or 7 -'s in a row, which is not good for timing
- ▶ We should have the same disparity bound during training and normal operation
 - This can easily be achieve by replacing the code with a disparity of 4 with a code of disparity 2
 - So replace the 6-tuple (-++++) for entry [0010] in Table 190-8 with the 6-tuple (-+-++)

8b6T has 256 NND 6-tuples

- > 86 6-tuples with disparity 0
- 816-tuples with disparity 1
- ➤ 60 6-tuples with disparity 2
- > 29 6-tuples with disparity 3

Calculation of the Amplitude Spectrum

- ► The amplitude spectrum of the PAM-3 8b6T and PAM-2 4b6B symbols are calculated using the Welsh method with overlapping segments
 - Using 262144 6-tuples
 - This is 1572864 1T symbols, ~20 ms time duration
 - Using an 8192 point FFT and Hann window
 - Identical data set used for PAM-3 and PAM-2
 - A test signal is generated in the same way as the refresh signal by setting all of the bits of each transmit octet $Txb_n<0:7>$, (shown in Figure 190–4), to zero
 - Each transmit octet is then scrambled and converted into a code-group consisting of 6 PAM-2 or 6 PAM-3 symbols
- ▶ Do not average multiple spectrum
 - Spectrum results are presented for this set of 262144 scrambled octets

Spectrum of Existing PAM-2 and PAM-3 Symbols

Spectrum of PAM-2 4b6B-Swap $(-+++++) \rightarrow (-+-+++)$

Summary

- ► The existing table of 4b6B NND code-groups for PAM-2 training result in a difference between the running disparity bound during PAM-2 training (+/-7) and normal operation (+/-5)
- ► Running disparity was added to 10BASE-T1L and 100BASE-T1L to support Intrinsically Safe applications
 - Without running disparity the diodes in the system would clamp and introduce non-linearities
 - A worse running disparity bound in training could result in increased non-linearity
- ► The existing PAM-2 table results in longer runs of 1's or -1's in training than during normal operation
 - We used PAM-2 during training to aid start-up, but chose a set of codes that is worse for timing
- ► As there are many other PAM-2 codes available to use with a disparity of 2, this difference in running disparity bound is unnecessary
- ► Comment 231 proposes a resolution to this issue by replacing the 6-tuple [-111111] for entry [0010] in Table 190-8 with the 6-tuple [-11-1111]

Questions?