

VCSELs Performance measurements and reliability analysis

Rubén Pérez-Aranda, KDPOF Joseph Pankert, TRUMPF Photonic Components Roger King, TRUMPF Photonic Components

IEEE 802.3dh Task Force - 5th Oct 2022 Ad-hoc Meeting



Performance measurements

- Test results of 850nm 25Gbps VCSELs supplied by different vendors, as already reported at perezaranda_OMEGA_01b_0720_VCSEL_test_methods
- Results for same devices were already presented at <u>https://www.ieee802.org/3/cz/public/jul_2020/index.html</u>
- Test results for 980nm VCSEL are also provided for comparison

Test setup

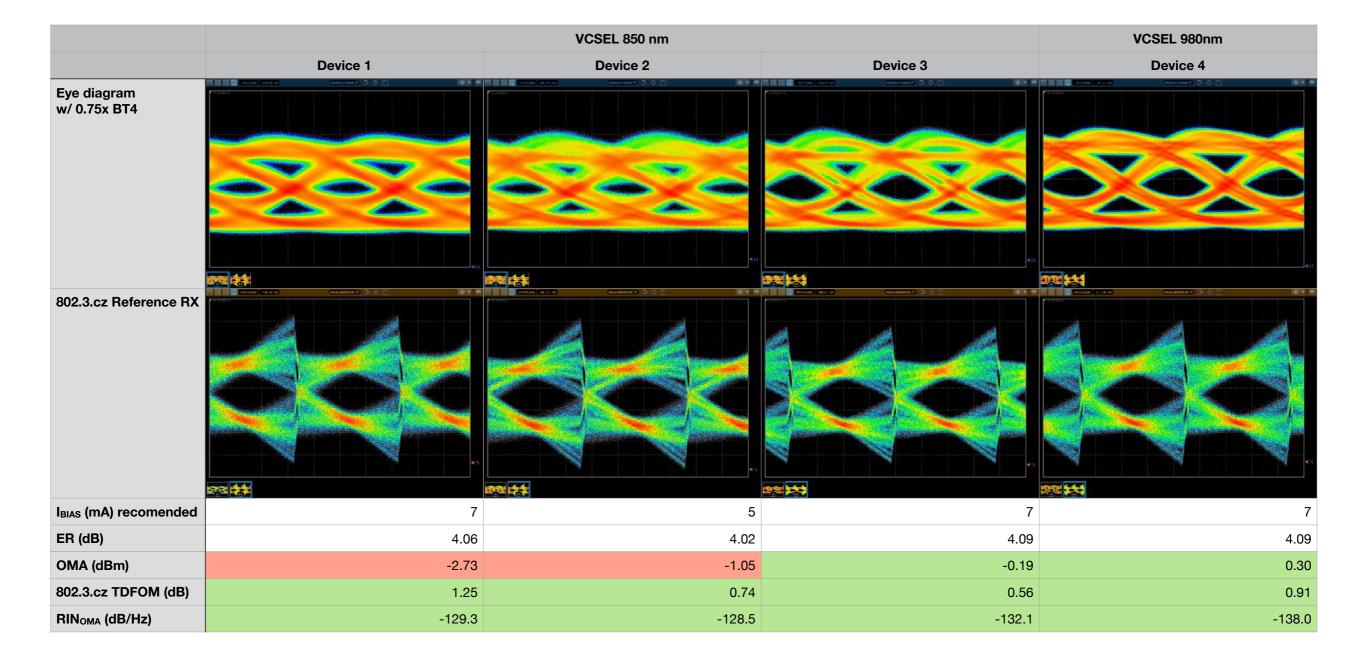
Spacers to adjust WD

PCB

SF1521-60115

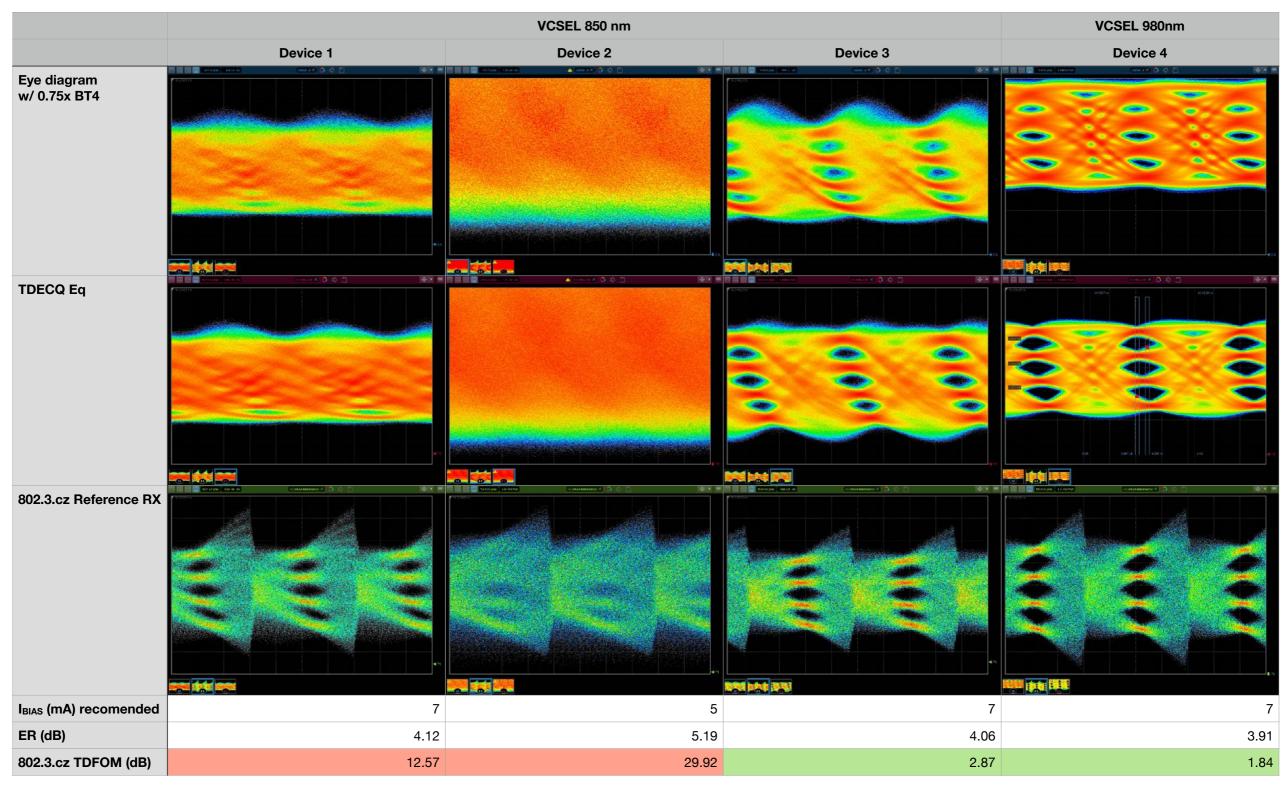
Performance at $T_{BS} = -40^{\circ}C$, 25 Gbps NRZ

		VCSEL 850 nm		VCSEL 980nm
	Device 1	Device 2	Device 3	Device 4
Eye diagram w/ 0.75x BT4				
I _{BIAS} (mA) recomended	7	5	7	7
ER (dB)	3.98	3.99	4.01	3.77
OMA (dBm)	0.98	2.44	2.26	3.19
802.3.cz TDFOM (dB)	1.06	7.89	0.33	1.17
RIN _{OMA} (dB/Hz)	-130.1	-127.3	-130.9	-144.6

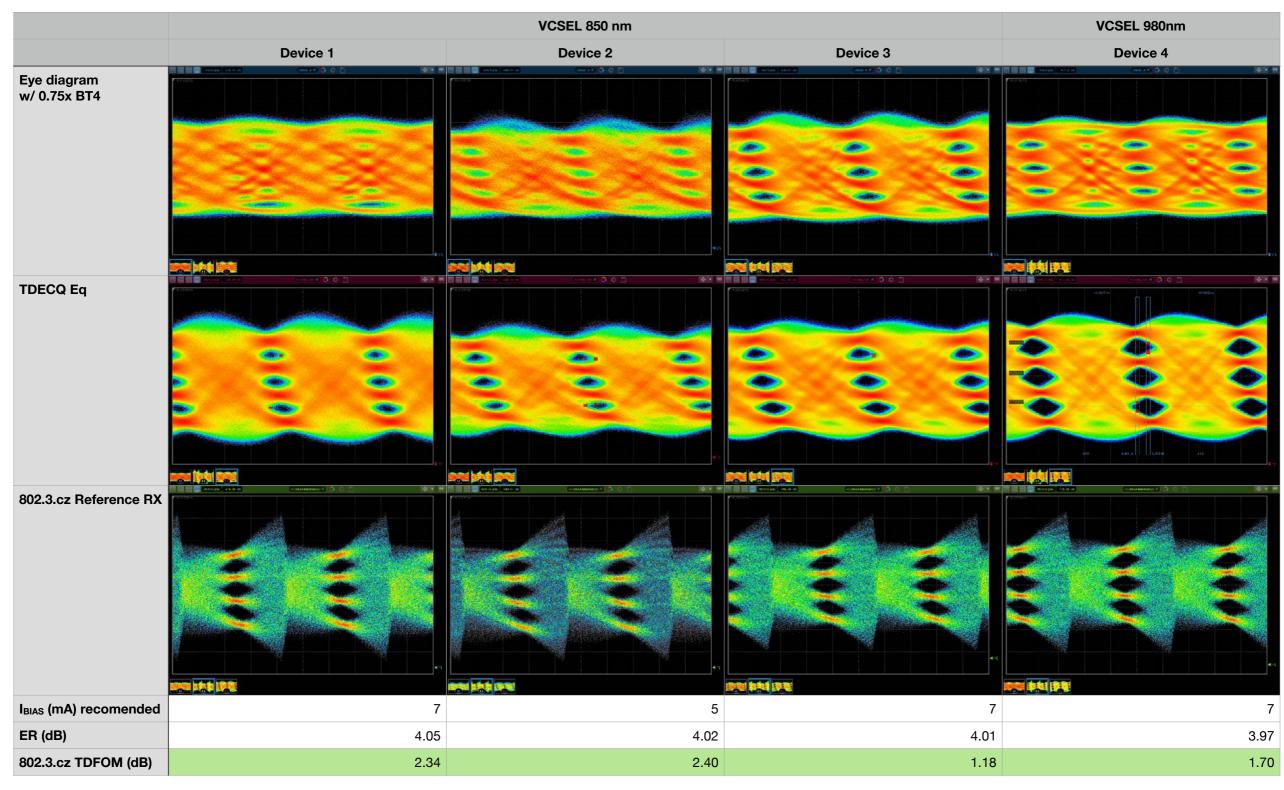

Performance at $T_{BS} = 85^{\circ}C$, 25 Gbps NRZ

		VCSEL 850 nm		VCSEL 980nm
	Device 1	Device 2	Device 3	Device 4
Eye diagram w/ 0.75x BT4 802.3.cz Reference RX				
I _{BIAS} (mA) recomended	7	5	7	7
ER (dB)	4.00	4.36	4.04	3.99
OMA (dBm)	-0.64	1.31	1.29	1.64
802.3.cz TDFOM (dB)	1.24	0.59	0.60	0.88
RIN _{OMA} (dB/Hz)	-130.7	-131.7	-130.9	-140.4

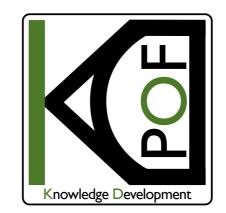
Performance at $T_{BS} = 125^{\circ}C$, 25 Gbps NRZ


Performance of 25 Gbps NRZ, summary

- RIN OK
- TDFOM is OK in general in high temperature for 850nm
- One of the tested VCSELs is not able to operate at cold
- OMA is degraded with high temperature; only one 850nm VCSEL passed OMA requirement (TDFOM dependent)
- It is clear the superiority of 980nm in the full temperature range
- TX performance evaluation has been carried out based on 802.3cz test methods, which guarantee interoperability to meet automotive link budget requirements
- Despite the fact that a 850nm VCSEL can be produced to meet 25 Gb/s 802.3cz TX characteristics, the wear-out reliability is the limitation for the considered mission profile (see next slides)
- Even though 50 Gb/s is not a 802.3dh objective, the following slides show some results for PAM4 50 Gb/s, which reinforce why 980nm was selected in 802.3cz


Performance at $T_{BS} = -40^{\circ}C$, 50 Gb/s PAM4

Performance at $T_{BS} = 85^{\circ}C$, 50 Gb/s PAM4



Performance at $T_{BS} = 125^{\circ}C$, 50 Gb/s PAM4

		VCSEL 850 nm		VCSEL 980nm
	Device 1	Device 2	Device 3	Device 4
Eye diagram w/ 0.75x BT4				
TDECQ Eq				
802.3.cz Reference RX				
I _{BIAS} (mA) recomended	7	5	7	7
ER (dB)	3.92	3.75	4.03	4.04
802.3.cz TDFOM (dB)	5.32	10.34	4.87	2.85

Reliability model

IEEE 802.3dh Task Force - 5th Oct 2022 Ad-hoc Meeting

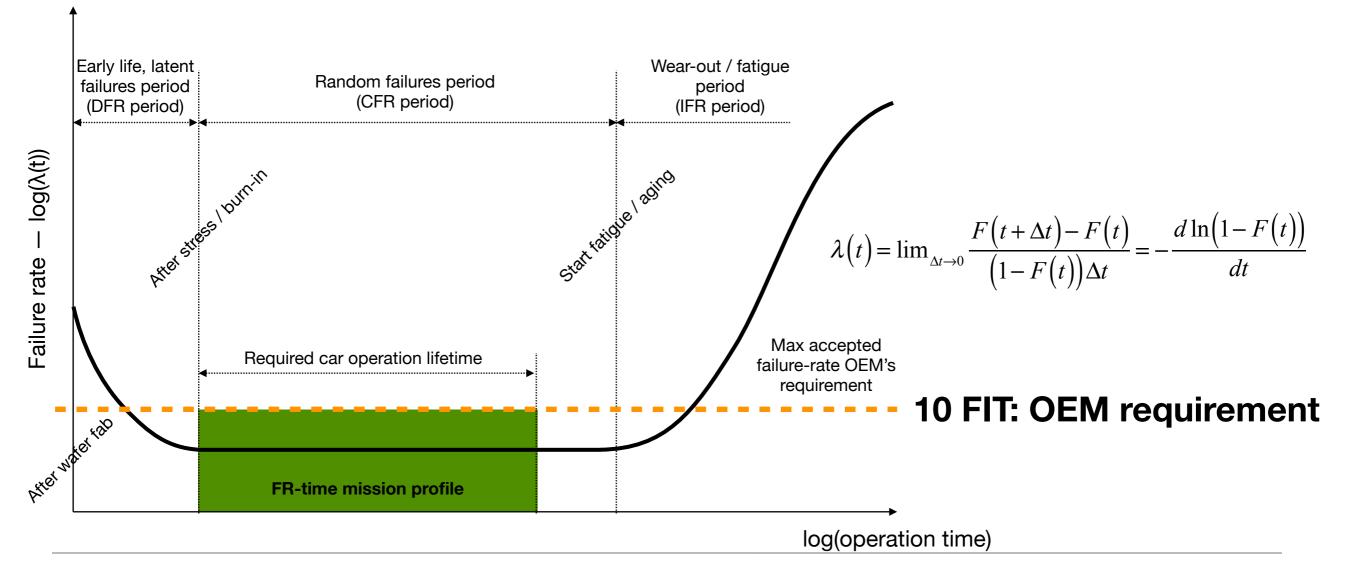
$$TTF_{x\%} = C \cdot J^{-n} \cdot \exp\left(\frac{E_a \cdot e}{k_B \cdot T_J}\right) = F^{-1}\left(\frac{x}{100}\right); \quad F(t) = \Phi\left(\frac{\ln(t) - \mu'}{\sigma'}\right)$$

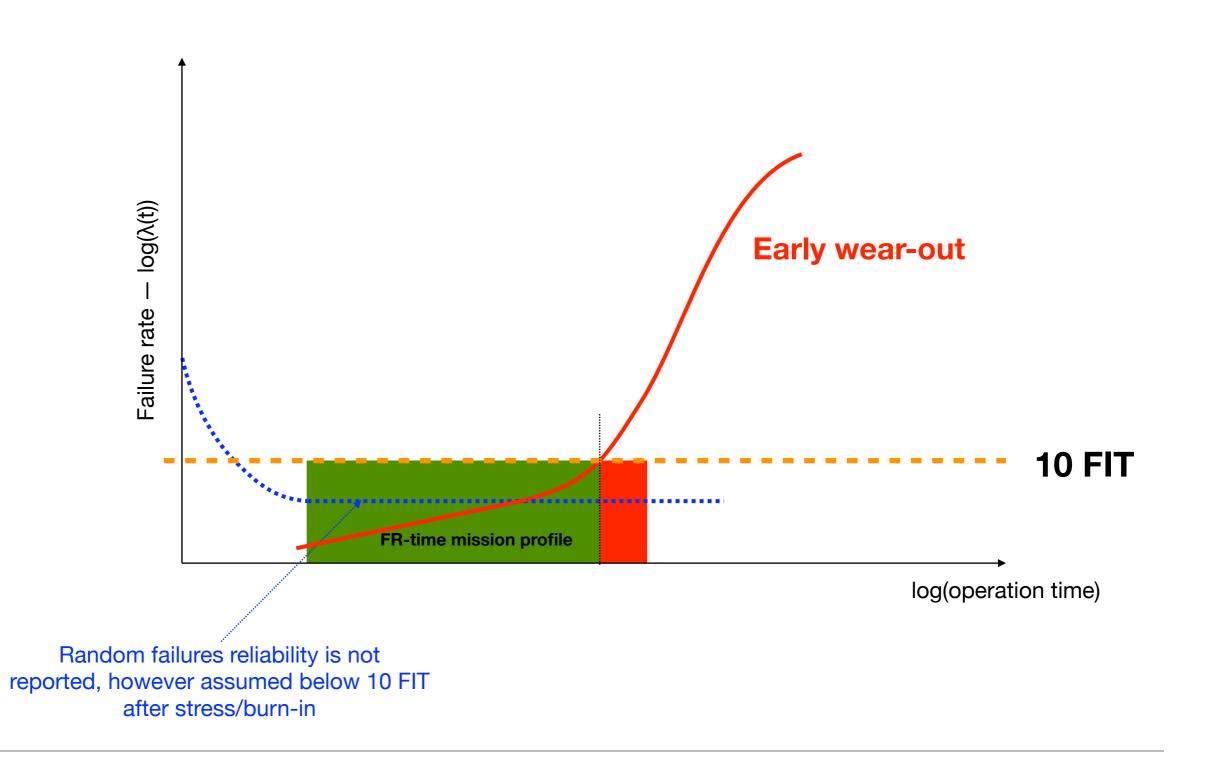
$$F(t) = \int_0^t f(\tau) d\tau$$

$$f(t) = \frac{dF}{dt}(t), \ f(t) \ge 0 \text{ for } \forall t \ge 0, \ \int_0^\infty f(\tau) d\tau = 1$$

$$f(t') = \frac{1}{\sigma' \sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(\frac{t' - \mu'}{\sigma'}\right)^2\right)$$

- *F(t)* is the cumulative distribution function (CDF) of the failure probability
 - Φ is the standard normal distribution (i.e. N(0,1))
 - *t* is the time to failure
 - t' is the natural logarithm of the time to failure
 - μ ' mean of the natural logarithms of the time to failure
 - σ' standard deviation of the natural logarithms of the time to failure


$$MTTF = \int_0^\infty \tau f(\tau) d\tau$$
$$TTF_{1\%} = F^{-1}(0.01)$$
$$TTF_{50\%} = F^{-1}(0.5) = \exp(\mu')$$
$$TTF_{x\%} = \exp\left(\mu' + \sigma' \cdot \Phi^{-1}\left(\frac{x}{100}\right)\right)$$


- Arrhenius's equation
 - *E_a* is the activation energy of failure mechanism (eV)
 - e is the electron charge (SI units)
 - *k*_B is the Boltzmann's constant (SI units)
 - T_J is absolute temperature (Kelvin)
 - J is the current density (e.g. in kA/cm²)
 - *n* is the current exponent
 - C is a constant
 - $TTF_{x\%}$ is the time to x% failures (e.g. in hours)

Reliability model — failure rate

- Pay attention that in general failure-rate λ(t) is not constant and depends on how much time the component has survived in operation
- Failure-rate is typically measured in Failures In Time (FIT), number of failures per 10⁹ (billion) device-hours
 - 1 FIT = probability of failure is 10⁻⁹ / 1 hour (operation)
 - 1 FIT = probability of failure is 1 ppm / 1000 hours
 - 1 FIT = 1 failure per 1000 devices operating 1 million hours = 1 failure per 10 million devices operating 100 hours

Reliability of 850nm VCSEL

Data and model of king_3cz_01_1120 and king_3cz_01a_0521 Similar analysis of perezaranda_3cz_01b_080621_vcsel_reliability at 7.5 mA

Reliability results (model in T_J)

Reliability parameters

Operation	Operation total time (h)	32000	Reliability	Wear out Ea (eV) @ TJ	1.180
	Service life (years)	15	model	Wear out n @ TJ	1.640
	Min oxide aperture diam. (um)	7.0		TTF x%, location	50.0
	Iop (mA) max	7.0000		Log-normal σ', In (hours)	0.5
	J _{OP} (kA/cm²)	18.20		J₀ (kA/cm²)	19.50
	J _{OP} (mA/um²)	0.18		T _{J0} (°C)	193
	ΔT _{AS} (°C)	20.0		TTF ₀ x% (hours)	965
VCSEL model	R _{JS} (K/W) @ room Ts reference	1950		Arrhenius C factor (hours) @ T _J	2.200519E-08
-	R _{JS} factor	100 %		Qe	1.6022E-19
	R _{JS} (K/W) @ room Ts	1950		K _B	1.3806E-23
	R _{JS} room Ts (°C)	20.0		Qe/K _B	1.1605E+04
	R _{JS} Exponent	1.067		°C to Kelvin	273.15
	R _{JS} Current fitting p0	0.01754	VCSEL model	PDIS poly-fitting p11	-0.006889
	R _{JS} Current fitting p1	0.9636	fitting	PDIS poly-fitting p02	-5.203E-05
	P _{DIS} poly-fitting p00	-0.3481		P _{DIS} poly-fitting p21	0.0001612
	PDIS poly-fitting p10	1.291		P _{DIS} poly-fitting p12	3.641E-05
	PDIS poly-fitting p01	0.01552		P _{DIS} poly-fitting p03	1.736E-15
	P _{DIS} poly-fitting p20	0.05763			

 Recommended I_{bias} = 7 mA for performance

 $TTF_{5FIT} = \exp\left(\mu' + \sigma' \cdot \Phi^{-1}\left(\frac{5 \cdot 32000}{1000} 10^{-9}\right)\right)$ $\lambda(t) = -\frac{d\ln(1 - F(t))}{dt}; ppm = \frac{\lambda(t) \cdot 32000}{1000}$

Reliability result

	Temp							Failure rate						
	Percentage	Operation time per Temperature (h)	T _A (°C)	Ts (°C)	R _{JS} (K/W)	P _{DIS} (mW)	Т _Ј (°С)	TTF x% (hours)	TTF _{5 FIT} (hours)	Equivalent time in max T (hours)	Log-normal mu', In (hours)	Failure-rate wear out (FIT)	Failure-rate maverick (FIT)	ppm
то	6 %	1920	-40	-20.0	1811.5	12.09	1.9	7.895E+11	61299412617	0.00	27.3947			
T1	20 %	6400	23	43.0	2296.2	10.82	67.8	5.199E+07	4036561	1.34	17.7665			
Т2	65 %	20800	50	70.0	2506.1	10.77	97.0	2.202E+06	170955	102.86	14.6048			
Т4	8 %	2560	100	120.0	2897.5	11.46	153.2	1.678E+04	1303	1661.56	9.7277	2(.)		
Т5	1 %	320	105	125.0	2936.8	11.58	159.0	1.089E+04	845	320.00	μ' 9.2954	$\lambda(t)$		ррт
Cummulative	100 %	32000								t 2085.76	μ 9.2954	1625.3	5.0	52170

> 10 FIT !

Reliability of 850nm VCSEL

Data presented in giovane_3cz_01_080621

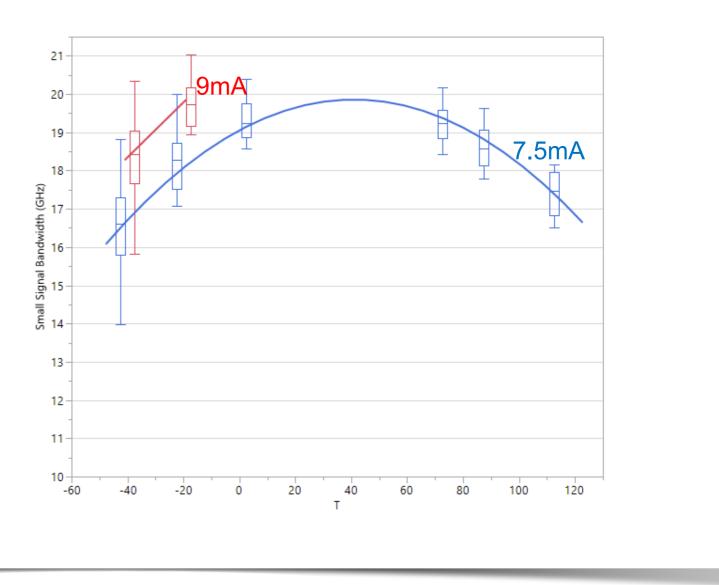
Model fitting and calculations presented in perezaranda_3cz_01b_080621_vcsel_reliability and perezaranda_3cz_01_150621_vcsel_reliability_annex

giovane_3cz_01_080621

850 nm 25G VCSEL Reliability

Laura Giovane, Broadcom Inc

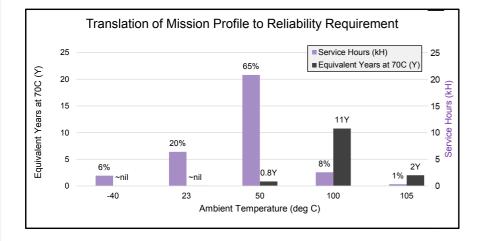
IEEE 802.3cz Task Force 8 June 2021


Performance and recommended bias

850nm 25G VCSEL Characterization Bandwidth Performance Over Temperature

- Intended for extended temperature range 0-85°C
- Recommended bias is 7.5mA and
- Small signal bandwidth exceeds 17GHz
- Bandwidth at 115°C is greater than 16GHz
- At -40°C bandwidth decay can be increased by increasing bias without concern for reliability.

3 |



Acceleration factors $-\Delta T_{SJ}$ constant

850nm 25G VCSEL Reliability Requirement

	Data Center	Automotive	70% Mis	sion Profile	
Ambient Temperature	0-70C –commercial 0-85C –extended Most of time near max temperature	Wider: -40C-105C Temperature Profile	60% 50% 40% 20% 10%		
Service Life (VCSEL on hours)	88kH=10Y	32kH=3.6Y	0% -40 23 Amb	50 100 ient Temperature (C	105

- 25G 850nm Datacom VCSELs are specified and designed for 10 years of continuous use (24x7x52x10=88kH) at constant substrate temperature
- Assumptions to translate automotive mission profile and service life to reliability requirement:
 - Total vehicle operating time: 32kH
 - Mission temperature profile:
 >90% of operating time is below 50C!
 - Acceleration model for 25G VCSEL (Ea=1.15eV)
 - VCSEL substrate is 10degC hotter than ambient
- 32kH Automotive service life/mission profile corresponds to ~13Y at 70C (substrate)

- Acceleration factors can be calculated based on reliability model (Arrhenius's Eq for absolute temperature)
- Assumed that Ea = 1.15 eV is given in terms of T_J (verbally confirmed by presenter)
- $\Delta T_{SJ} = 25^{\circ}C$ constant across T_S is considered as possible cause to explain the presented results
 - However, GaAs R_{TH} is expected to increase with T_{S}
- 32kH Automotive mission profile corresponds to ~29Y at 70°C (substrate)

 $AF_{i} = \exp\left(\frac{E_{a} \cdot e}{k_{B}}\left(\frac{1}{T_{J_{REF}}} - \frac{1}{T_{J_{i}}}\right)\right)$

Calculated T _J as $\Delta T_{SJ} = 25^{\circ}C$	Calc	ulated	T _J as	ΔT _{SJ} =	= 25°C
--	------	--------	-------------------	--------------------	--------

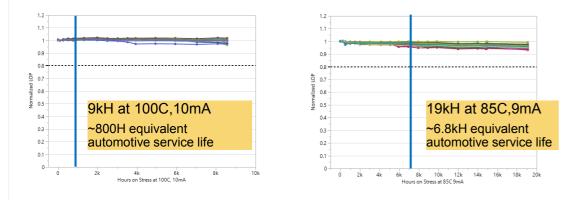
	Percentage	Operation time per Temperature (h)	T _A (°C)	T _S (°C) ΔT _{AS} = 20°C	T_J (°C) $\Delta T_{AS} = 20^{\circ}C$ $\Delta T_{SJ} = 25^{\circ}C$	Acc Factor ATAS = 20°C	Equivalent time in T _{REF} (Years), ΔT _{AS} = 20°C	Ts (°C) ΔTas = 10°C	T_J (°C) $\Delta T_{AS} = 10^{\circ}C$ $\Delta T_{SJ} = 25^{\circ}C$	Acc Factor ΔT _{AS} = 10°C	Equivalent time in T _{REF} (Years), ΔT _{AS} = 10°C
T _{REF}			_	70	95.0	<i<sub>J_{REF}</i<sub>		70	95.0	<i<sub>J_{REF}</i<sub>	
то	6 %	1920	-40	-20	5.0	0.000	0.00	-30	-5.0	0.000	0.00
T1	20 %	6400	23	43	68.0	0.057	0.04	33	58.0	0.017	0.01
Т2	65 %	20800	50	70	95.0	1.000	2.38	60	85.0	0.363	0.87
тз	8 %	2560	100	120	145.0	76.287	22.36	110	135.0	34.903	10.23
Т4	1 %	320	105	125	150.0	111.231	4.07	115	140.0	51.845	1.90
Cumulative	100 %	32000				AF,	28.85			AF.	13.01

Parameters

IOP (mA)	7.5
Ea (eV)	1.15
Qe	1.6022E-19
КВ	1.3806E-23
Qe/KB	1.1605E+04
°C to Kelvin	273.15
Operation total time (h)	32000

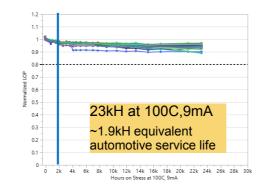
Result matches OK

Ea and n calculation – ΔT_{SJ} , R_{TH}, V_{AK} constants

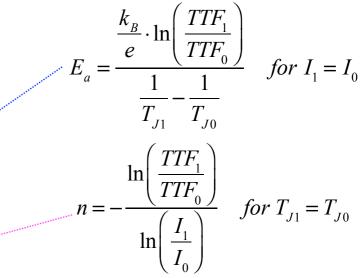

High Temperature Operating Life

- Long-term aging (over many years) show that 850nm VCSELs are robust for automotive mission profile
 - >4000 channels with cumulative >30MH without failure

6 |


Deremeters

- Negligible degradation for VCSELs in stress for extended high temperature operating life after 10kH!
- 32kH mission profile/service life equivalent at 7.5mA bias shown by blue vertical line



Temperatur e-Ambient	lbias (mA)	Mission profile %	Total Time
-40°C	7.5	6%	1.9kH
23°C	7.5	20%	6.4kH
50°C	7.5	65%	20.8kH
100°C	7.5	8%	2.6kH
105°C	7.5	1%	0.3kH

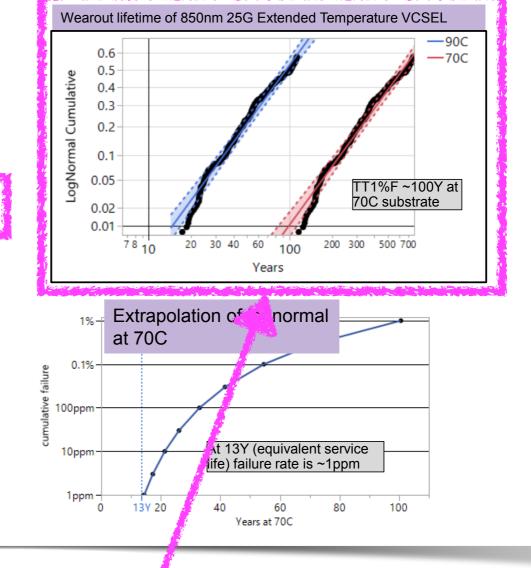
Mission profile/service life

- Using VCSEL reliability model, we can calculate *Ea* and *n* from reported data
- R_{TH} is considered constant with T_S
- V_{AK} is considered constant with I_{BIAS} and T_{S}
- PDIS >> POPTICAL
- Calculated *Ea* = 1.146 eV vs 1.15 eV: very good matching!
 - However, V_{AK} and R_{TH} should not be considered constants
- Calculated n = 8.2 >> 1.64 of King 850nm 25G VCSEL
 - Possible root cause may be current exponent is accounting aging effects due to temperature, because the considered assumptions.

$T_{x} = T_{a} +$	$I_{BLAS}(mA)$	$. \Lambda T$
$I_J - I_S +$	7.5	$\Delta I SJ@7.5mA$
	1.00	

Ea and N consistency

Paran	leters	Experiment	Ts (°C)	IBIAS (mA)	T., (°C)	Equiv. Time (h)	Estim. Ea (eV)	Estim. N	1	(TTF_1)
Qe	1.6022E-19		,	-500 ($\Delta T_{SJ} = 25^{\circ}C_{Q}$ 7.5 mA		Using 2, 3	Using 1,3	ln In	$\frac{1}{TTF}$
КВ	1.3806E-23	1	100	10	133.3	800			<i>n</i> =	$\frac{11}{(-)}$
Qe/KB	1.1605E+04	2	85	9	115.0	6800			1	$n\left(\frac{I_1}{-1}\right)$
°C to Kelvin	273.15	3	100	9	130.0	1900	1.146	8.210	4	$\left(\overline{I_0} \right)$


Extended Temperature 25G 850nm VCSEL Characteristic

Wearout Lifetime

5 |

 $C = TTF_{x\%} \cdot I_0^n \cdot \exp[$

- Equivalent of ~13Y of life at 70C (substrate) required for automotive application
- Extended Temperature Datacom VCSEL specified at >10Y at 85C and >40Y wearout life at 70C
 - Characteristic TT1%F 25G VCSEL is ~100 Years at 70C (substrate)
 - Extrapolation shows low-level cumulative failure at 13Y, 70C that corresponds to automore e mission life corresponds to <1ppm
- 850 nm 25G VCSELs are capable of performing in automotive application for duration of service life

 $\simeq 0.8$

 $\ln(TTF_{1\%}) - \ln(TTF_{50\%})$

 Φ^{-1}

Reliability results

		Reliabilit	y parameters			
Operation	Operation total time (h)	32000	Reliability	Wear out Ea (eV) @ TJ	1.150	Ea n can take any value w/o effect because
	Service life (years)	15	model	Wear out n @ TJ	8.210	reference $I_0 = I_{OP}$
			-	TTF x%, location	1.0	
	I _{OP} (mA) max	7.5000		Log-normal o', In (hours)	0.8	\prec calculated from TTF _{50%} and TTF _{1%}
	ΔΤΑς (°C)	20.00		I ₀ (mA)	7.5	I₀ = I₀P = 7.5 mA
				T ₁₀ (°C)	95.0	▲ TTF _{1%} ~100 years for 70°C substrate
				TTF ₀ x% (hours)	873600	
VCSEL model	ΔT _{SJ} (°C) @ 7.5mA	25.0		Arrhenius C factor (hours) @ TJ	2.413444E-03	$C = TTF_{x\%} \cdot I_0^n \cdot \exp\left(-\frac{E_a \cdot e}{k_B \cdot T_{J_0}}\right)$
fitting	I _{FIT} (mA)	7.5		Qe	1.6022E-19	$C = TTF_{x\%} \cdot I_0^n \cdot \exp\left[-\frac{a}{k - T}\right]$
				Кв	1.3806E-23	$\begin{pmatrix} \kappa_B & I_{J_0} \end{pmatrix}$
				Qe/K _B	1.1605E+04	
				°C to Kelvin	273.15	

$$TTF_{5FIT} = \exp\left(\mu' + \sigma' \cdot \Phi^{-1} \left(\frac{5 \cdot 32000}{1000} 10^{-9}\right)\right)$$
$$T_{J} = T_{S} + \frac{I_{BLAS}(mA)}{7.5} \cdot \Delta T_{SJ@7.5mA}$$

$$\lambda(t) = -\frac{d\ln(1 - F(t))}{dt}; ppm = \frac{\lambda(t) \cdot 32000}{1000}$$

Reliability result

	Temperature profile				Failure rate							
	Percentage	Operation time per Temperature (h)	T _A (°C)	Ts (⁰C)	Т」 (°С)	TTF x% (hours)	TTF₅ _{FIT} (hours)	Equivalent time in max T (hours)	Log-normal mu', In (hours)	Failure-rate wear out (FIT)	Failure-rate maverick (FIT)	ppm
то	6 %	1920	-40	-20.00	5.0	1.084E+11	11684618447	0.00	27.2706			
T1	20 %	6400	23	43.00	68.0	1.539E+07	1658406	3.27	18.4104			
Т2	65 %	20800	50	70.00	95.0	8.736E+05	94131	187.00	15.5415			
тз	8 %	2560	100	120.00	145.0	1.145E+04	1234	1755.75	11.2070	2(.)		
T4	1 %	320	105	125.00	150.0	7.854E+03	846	320.00	10.8298	$\Lambda(t)$		ppm
Cummulative	100 %	32000						t 2266.01	μ΄ 10.8298	118.4411	5.0	3950

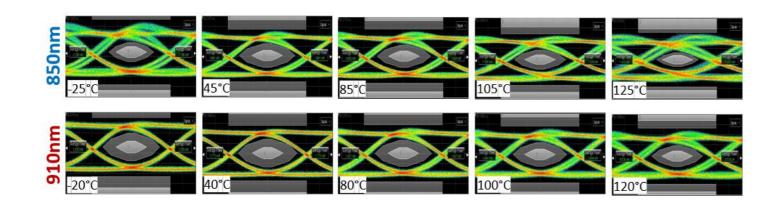
> 10 FIT !

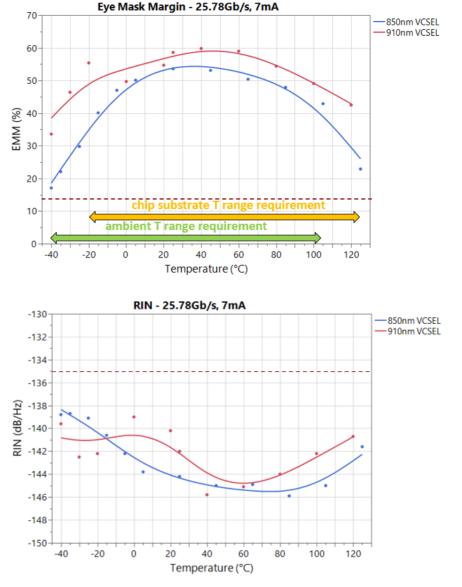
Reliability of 850nm VCSEL

Data and model presented in Hoser_3dh_220824

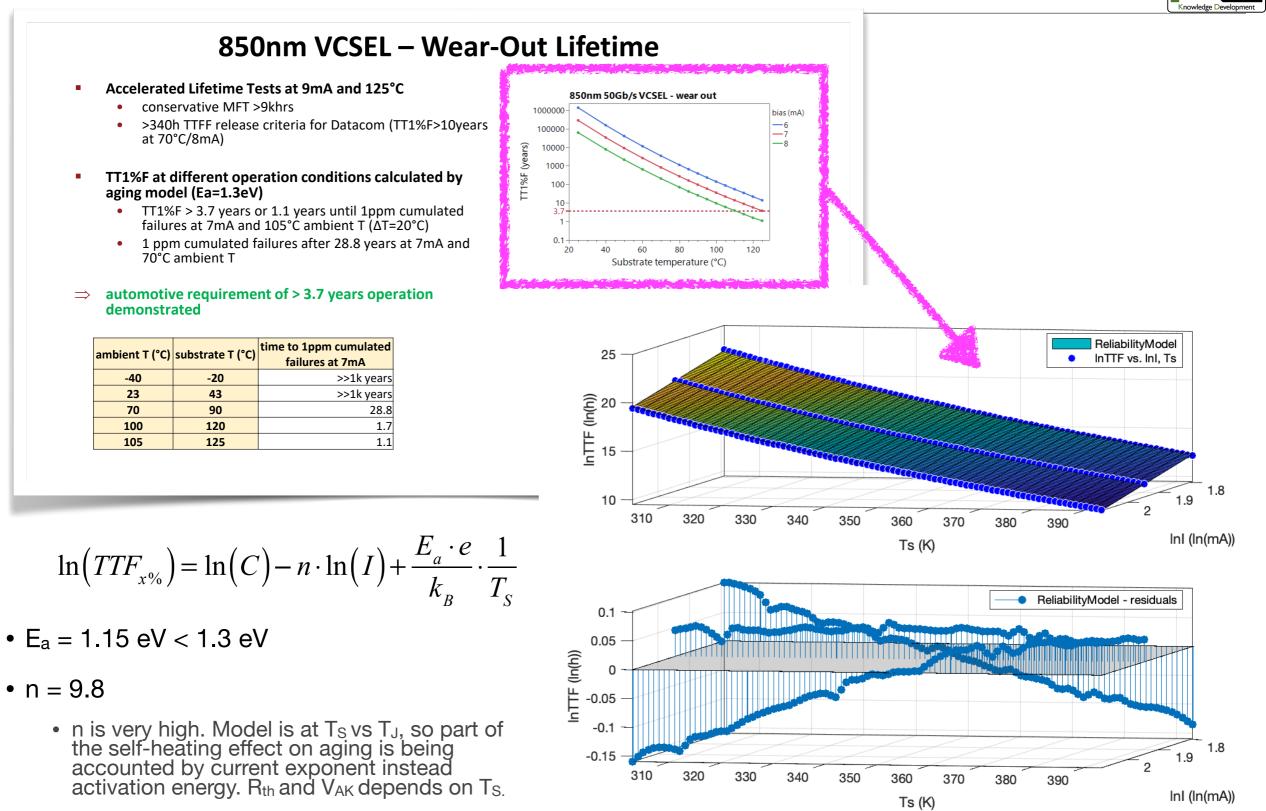
850 and 910nm VCSELs for POF Automotive Links

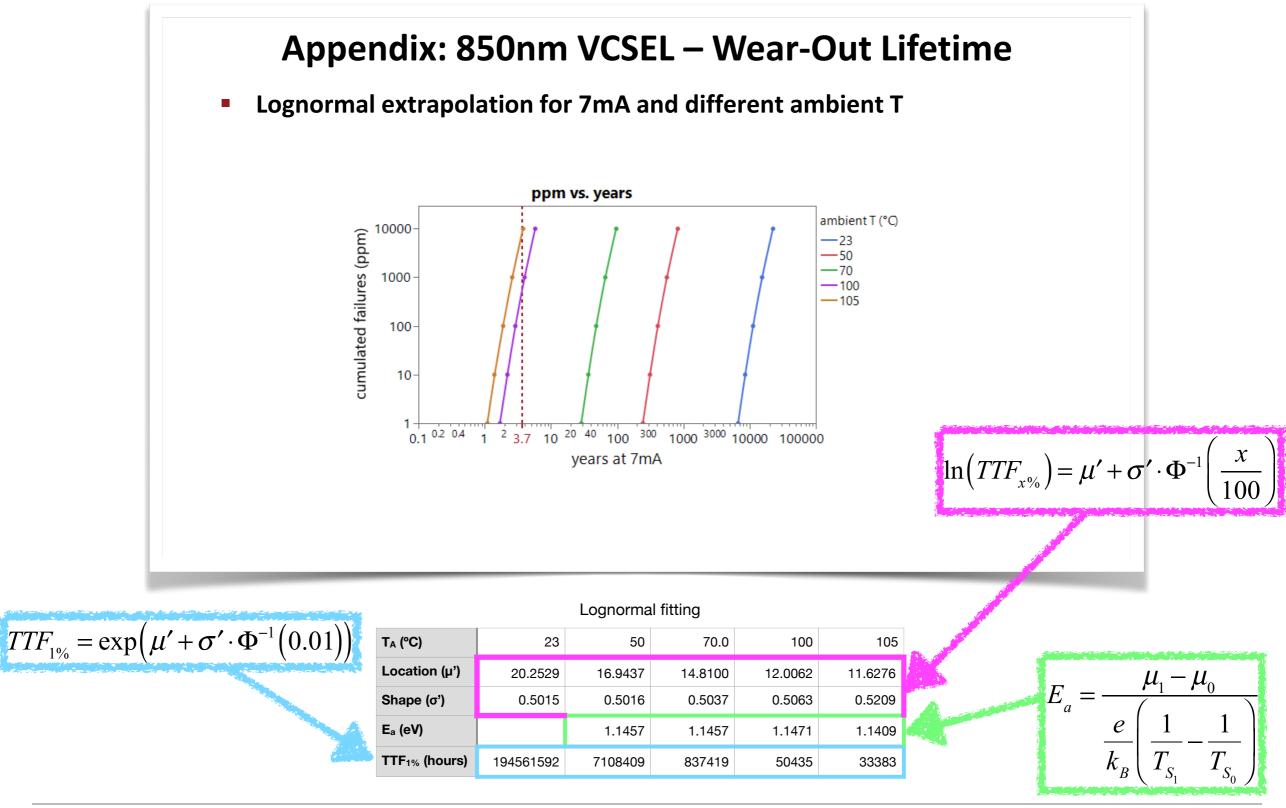
Mirko Hoser, II-VI Inc.


802.3dh Task Force Plenary Meeting August 24th, 2022


Performance and recommended bias

850/910 nm VCSEL – Large Signal Performance


- 850 and 910nm 28G NRZ VCSELs tested
- Test setup:
 - BPG -> Bias-Tee -> Probe -> VCSEL -> OE module
 - no DSP. no impedance matching etc.
 - 25.78 Gb/s, 7mA
- good RF Performance over whole automotive temperature range demonstrated:
 - EMM > 20%
 - RIN < -138 dB/Hz


Ea and n fitting (Arrhenius's equation in T_S)

Lognormal unreliability function fitting

Reliability results

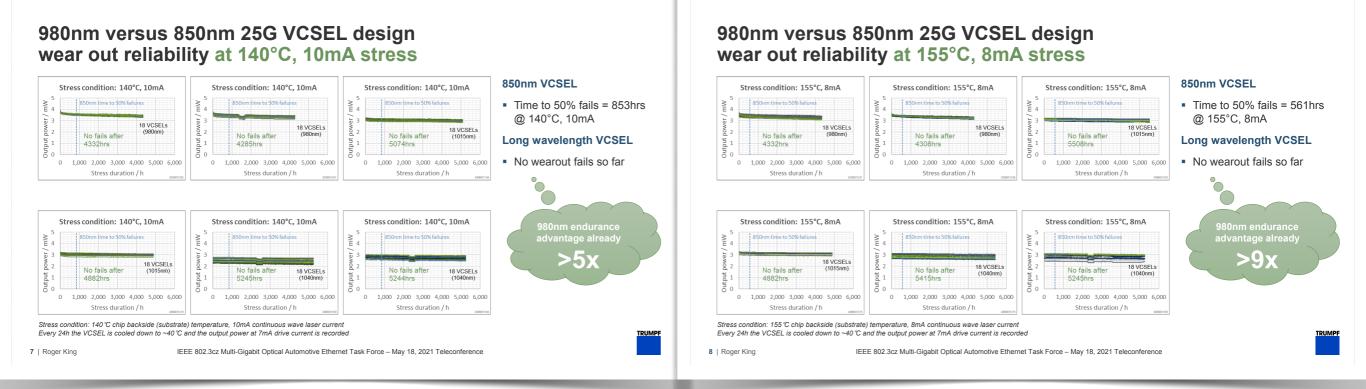
Reliability parameters

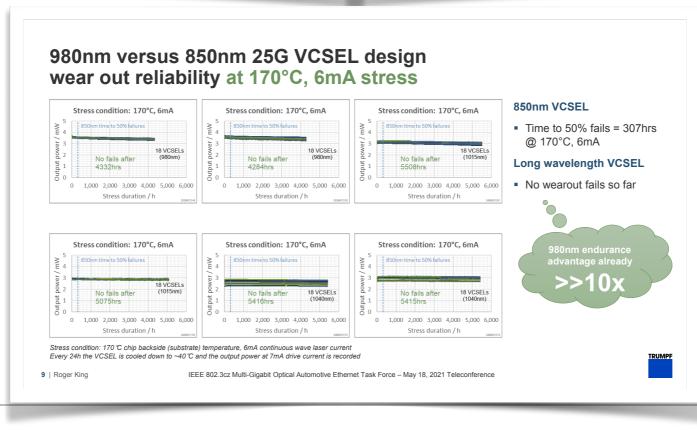
Operation	Operation total time (h)	32000	Reliability	Wear out Ea (eV) @ T _S	1.15	
	Service life (years)	15	model	Wear out n @ Ts	9.8	
	I _{OP} (mA)	7.0000		TTF x%, location	1.0	
	ΔT _{AS} (°C)	20.0		Log-normal σ', In (hours)	0.52	
				l₀ (mA)	7.00	
				T _{S0} (°C)	125	
				TTF₀ x% (hours)	33383	
				Arrhenius C factor (hours) @ T_{S}	1.546241E-02	
				Qe	1.6022E-19	
				Кв	1.3806E-23	
				Qe/K _B	1.1605E+04	
				°C to Kelvin	273.15	

Reliability result

	Tempo	erature profile		Failure rate							
	Percentage	Operation time per Temperature (h)	T _A (°C)	Ts (°C)	TTF x% (hours)	TTF₅ FIT (hours)	Equivalent time in max T (hours)	Log-normal mu', In (hours)	Failure-rate wear out (FIT)	Failure-rate maverick (FIT)	ppm
то	6 %	1920	-40	-20.0	7.861E+12	2050349842825	0.00	30.9047			
T1	20 %	6400	23	43.0	2.063E+08	53817696	1.04	20.3567			
T2	65 %	20800	50	70.0	7.349E+06	1916870	94.49	17.0218			
T4	8 %	2560	100	120.0	5.122E+04	13360	1668.61	12.0556			
Т5	1 %	320	105	125.0	3.338E+04	8708	320.00	11.6276			
Cummulative	100 %	32000					2084.13	11.6276	0.0	5.0	160.00

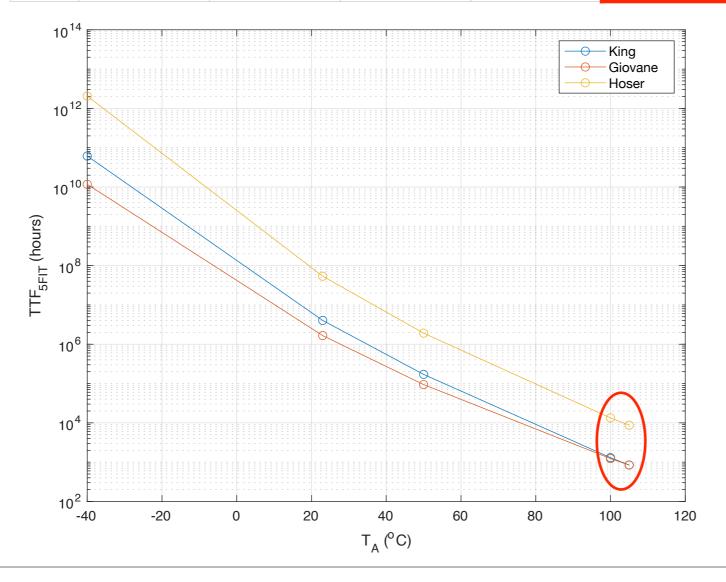
Requirement is met!




Wear-out reliability comparison

IEEE 802.3dh Task Force - 5th Oct 2022 Ad-hoc Meeting

Wear-out reliability: 850nm vs 980 nm comparison



Wear-out reliability: 850nm comparison

Reliability comparison -5 FIT

T _A (°C)	King	Giovane	Hoser	Giovane /	Hoser / King ratio	
	TTF₅ _{FIT} (hours)	TTF _{5 FIT} (hours)	TTF _{5 FIT} (hours)	King ratio		
-40	61299412617	11684618447	2050349842825	0.191	33.448	
23	4036561	1658406	53817696	0.411	13.333	
50	170955	94131	1916870	0.551	11.213	
100	1303	1234	13360	0.947	10.257	
105	845	846	8708	1.001	10.300	

Hoser shows 1 order of magnitude better wearout reliability

Data cross-check is suggested

Conclusions

- Performance measurements of 3 different 850nm VCSEL devices have been reported and compared vs 980nm VCSEL
- Wear-out reliability according an automotive mission profile of 3 different 850nm VCSELs has been reported. Comparison has also been reported
- The conclusions did not change with respect to 802.3cz: 980nm is the right wavelength for the considered mission profile
- Facts:
 - Functional and environmental requirements are the same: EEE, OAM, temperature range
 - Link budget is very similar: connectors insertion loss, aging, environmental conditions
 - Physical laws, test results and reliability of VCSELs are the same with OM3 and GIPOF
- If we do changes in components for .3dh wrt .3cz that DO NOT rely on GIPOF itself (i.e. the reason behind .3dh), confusion will be created in the market that will affect the success of both standards

Thank you

IEEE 802.3dh Task Force - 5th Oct 2022 Ad-hoc Meeting