212 Gb/s PAM4 per Lane C2M Channels A Via Length Performance Study Supplement

Rick Rabinovich January 17, 2023

200G PAM4 C2M Via Length Effect Study Supplement

Supporter

- Ali Ghiasi

200G PAM4 C2M Via Length Effect Study Supplement Objectives

- Follow up to presentation given on September $21^{\text {st }}, 2022$
- Study the effect of via length in channel performance
\checkmark Via lengths $=19 / 67 / 93 / 135 \mathrm{mil}$
- Evaluated channel performance using COM rev. 3.9 and corresponding new spreadsheets.
- Investigate the effect of Raised Cosine vs. Butterworth filter performance
- Illustrate the paradox when cascading s-parameters of vias and connector models

The intention of this presentation is NOT to:
\checkmark Discuss specific materials
\checkmark Discuss specific equalizations/implementations
\checkmark Discuss specific ASIC footprints
\checkmark Recommend specific receive filters
The intention of this presentation is to:
\checkmark Contribute two additional "optimized" channels based on "actual" channel implementations which includes the ASIC breakout, routing, via transitions, and the latest OSFP model available
$>$ Via antipads in PCB inner layers were optimized using HFSS Optimetrix
\checkmark Provide channels with impairments that seasoned design engineers will encounter when implementing channels operating at $224 \mathrm{~Gb} /$ s per lane.
\checkmark Analyze receiver equalization solutions to pass COM rev. 3.9

200G PAM4 C2M Via Length Effect Study Supplement

C2M Channel Highlights

- Traditional Topology, i.e., medium PCB material between ASIC and Connector
* Short Channel - Ex. NIC card
- Short Host Channel
* Well engineered challenging channel
* Includes Huray model for copper roughness
- Channel with IMPAIRMENTS
* ASIC/Connector vias and module finger transition
* Layout trace turns
* Skew compensation
* Full channel crosstalk
- MDI is an OSFP connector model
- Crosstalk source mostly at the connector and footprint
- HCB - Ideal transmission line with IL=4.0 dB @ Nyquist
- COM rev. 3.9 - Includes raise cosine option

200G PAM4 C2M Via Length Effect Study Supplement

Structure View \& Insertion Losses

- Full Structure:
- Two adjacent channels
$>$ Matching segmentation meshing (i.e., common minimum element size)
- Connector integrated with PCB
- HCB is ideal transmission line with IL $=4 \mathrm{~dB}$ @ Nyquist
- NEXT is evaluated at the ASIC model for more realistic results
- Vias = 19/67/93/135 mil long
- Blind Vias
- Frequency Sweep Range = 10 MHz to 120 GHz

> IL @ Nyquist (53.125 GHz)

Parallel Breakout

- IL PCB+Conn $=8.24 / 9.32 / 10.31 / 8.92 \mathrm{~dB}$
- IL нCB $=4 \mathrm{~dB}$
- IL TPO-to-TP1a $=12.27 / 13.32 / 13.44 / 12.93 \mathrm{~dB}$

Orthogonal Breakout

- IL PCB+Conn $=8.34 / 10.69 / 10.14 / 9.33 \mathrm{~dB}$
- IL HCB $=4 \mathrm{~dB}$
- IL TPO-to-TP1a = 12.38/14.69/14.17/13.36 dB

200G PAM4 C2M Via Length Effect Study Supplement

Two ASIC breakouts: Orthogonal vs. Parallel

Orthogonal Breakout

Parallel Breakout

200G PAM4 C2M Via Length Effect Study Supplement ASIC Ball Model Example

Cp already included in model $=>\mathrm{Cp}=0$

200G PAM4 C2M Via Length Effect Study Supplement

Parallel Breakout - IL/RL Performance

200G PAM4 C2M Via Length Effect Study Supplement

Parallel Breakout - IL/RL Performance

135 mil

RL_L14_XtraExtendedVias_C2M_P... Ansys

200G PAM4 C2M Via Length Effect Study Supplement

Parallel Breakout - FEXT/NEXT(ASIC) Performance

19 mil

67 mil

200G PAM4 C2M Via Length Effect Study Supplement

Parallel Breakout - FEXT/NEXT(ASIC) Performance

93 mil

135 mil

NEXT_L14_XtraExtendedVias_C2M_... Ansys

200G PAM4 C2M Via Length Effect Study Supplement

Orthogonal Breakout - IL/RL Performance

200G PAM4 C2M Via Length Effect Study Supplement

Orthogonal Breakout - IL/RL Performance

200G PAM4 C2M Via Length Effect Study Supplement

 Orthogonal Breakout - FEXT/NEXT(ASIC) Performance19 mil

67 mil

200G PAM4 C2M Via Length Effect Study Supplement

Orthogonal Breakout - FEXT/NEXT(ASIC) Performance

93 mil

135 mil

NEXT_L14_XtraExtendedVias_C2M Ansys

200G PAM4 C2M Via Length Effect Study Supplement

Structures and COM Configurations

- Four Via Lengths:
$\checkmark 19$ mil - 67 mil - 93 mil - 135 mil
- Two Breakouts:
\checkmark Parallel
\checkmark Orthogonal
- Medium Package Size $=30 \mathrm{~mm}$
- Two Filters:
\checkmark Butterworth
\checkmark Raised Cosine (starts @ 67 GHz, ends @ 79.7 GHz)*
- With PKG_Tx_FFE_Preset*
- Floating Taps:
$\checkmark 6$ groups/3 taps per group/120 UI span
- $\quad D E R=1 e-05$ and $5 e-5$
* Note: Default values in contributed spreadsheets

200G PAM4 C2M Via Length Effect Study Supplement

COM Results

2 FEXTs - 1 NEXT - Medium Size Package (30 mm)											
Orthogonal Breakout											
Case \#	Via Length	PKG_TX_FFE_Preset	Filter	DER_0	SNR_TX	eta_0	Float. Taps	EH (mV)	$\mathrm{VEC}(\mathrm{dB})$	ERL (dB)	ICN
1	19 mil	Yes	Rcin+ BW	1.00E-05	32.5	4.10E-09	Yes	10.3	8.63	17.6	1.47
2	67 mil	Yes	Rcin+ BW	1.00E-05	32.5	4.10E-09	Yes	8.7	9.88	16.6	2.04
3	93 mil	Yes	Rcin+ BW	1.00E-05	32.5	4.10E-09	Yes	6.7	11.21	15.5	2.27
4	135 mil	Yes	Rcin+ BW	1.00E-05	32.5	4.10E-09	Yes	4.5	13.85	15.5	2.83
5	135 mil	Yes	Rcin+ BW	5.00E-05	32.5	4.10E-09	Yes	6.2	11.14	16.1	2.83
2 FEXTs - 1 NEXT - Medium Size Package (30 mm)											
Paralell Breakout											
Case \#	Via Length	PKG_TX_FFE_Preset	Filter	DER_0	SNR_TX	eta_0	Float. Taps	EH (mV)	$\mathrm{VEC}(\mathrm{dB})$	ERL (dB)	ICN
1	19 mil	Yes	Rcin+ BW	1.00E-05	32.5	4.10E-09	Yes	9.5	8.79	17.6	1.79
2	67 mil	Yes	Rcin+ BW	1.00E-05	32.5	4.10E-09	Yes	7.9	10.28	16.6	2.36
3	93 mil	Yes	Rcin+ BW	1.00E-05	32.5	4.10E-09	Yes	6.9	11.15	15.4	2.62
4	135 mil	Yes	Rcin+ BW	1.00E-05	32.5	4.10E-09	Yes	5.6	13.36	15.5	3.25
5	135 mil	Yes	Rcin+ BW	5.00E-05	32.5	4.10E-09	Yes	7.5	10.80	16.1	3.25

* Pass: VECmax = 12 ; ERLmin = 10

200G PAM4 C2M Via Length Effect Study Supplement

COM Results Highlights

Longer vias require additional equalization features regardless of the ASIC breakout style:

- Stronger filter in addition to traditional Butterworth
> Raised Cosine or equivalent
- Reduce receiver intrinsic noise
- Higher SNR
- Stronger FEC (segmented?) to account for higher DER
- Floating DFE taps or equivalent

200G PAM4 C2M Via Length Effect Study Supplement

Modeling Paradox - Via + Connector $=$ Via and Connector

Cascading s-parameters from different sources has risks:

- Actual x-talk is lost by interconnecting non-TEM boundaries.
- Cascading s-parameters from different sources
\checkmark Missing interconnect structure pieces and phase information
\checkmark Double counting of transitions and creating phase distortion
- Unaccounted meshing mismatch
> Build channel model with a "holistic" approach
* Channel model should NOT be just an aggregate of s-parameter structures
* Channel should be segmented with wave ports along uniform transmission lines several wavelengths away from discontinuities.

Example:

200G PAM4 C2M Via Length Effect Study Supplement

Summary

"Equal Distribution of PAIN" to make C2M a viable interface

Longer PCB via solutions are feasible but:

1. Need to optimize via transitions

- Cancel via capacitive and inductive effects
- Optimize connector to module PCB transition

2. Stronger FEC to support higher DER

- Segmented FEC (?)

3. Enhanced Receiver Equalization (compared to P802.3ck):

- Stronger filter
- Higher SNR
- Include floating taps option or equivalent
- Reduce intrinsic chip noise
> Channel Modeling: Take a holistic approach

Q \& A

Additional Data

200G PAM4 C2M Via Length Effect Study Supplement

Working Spreadsheet

Table 93A-3 parameters		
Parameter	Setting	Units
package_t1_gamm30_1__32	[00.00084550 .000340225]	
package_ti_tau	0.00644805	ns/mm
package_Z_s	[9292;7070; 8080; 100100]	Ohm
Parameter	Setting	
board_t1_gamma0_a ${ }^{\text {a }}$ a 2	[06.44084e-4 3.6036e-05]	$1.5 \mathrm{db} / \mathrm{in}$ @ 56 G
board_tl_tau	5.790E.03	ns/mm
board_Z_c	100	Ohm
2_bp (TX)	125	mm
z_bp ((EXT)	0	mm
2_bp(FEXT)	125	mm
z_bp (RX)	,	mm
c_o	[0.2e-40]	nF
c_1	[0.2e-40]	nF
Include PCB	0	logical
Seletions [rectangle, gaussian,dual_rayleigh,triangle		
Histogram_Window_Weight	gaussian	selection
ar	0.02	UI

200G PAM4 C2M Via Length Effect Study Supplement

Channel Contributions*

	Rabinovich_C2M_200G_Paral_19mil_092122_NEXT.s4p
	Rabinovich_C2M_200G_Paral_19mil_092122_Thru.s4p**
	Rabinovich_C2M_200G_Paral_67mil_092122_FEXT.s4p**
	Rabinovich_C2M_200G_Paral_67mil_092122_NEXT.s4p**
	Rabinovich_C2M_200G_Paral_67mil_092122_Thru
	Rabinovich_C2M_200G_Paral_93mil_092122_FEXT.s4p**
	Rabinovich_C2M_200G_Paral_93mil_092122_NEXT.s4p**
	Rabinovich_C2M_200G_Paral_93mil_092122_Thru
	Rabinovich_C2M_200G_Paral_135mil_011723_FEX
	Rabinovich_C2M_200G_Paral_135mil_011723
	Rabinovich_C2M_200G_Paral_135mil_011723 _Thru.s4p
	Rabinovich_C2M_200G_Ortho_19mil_092122
	Rabinovich_C2M_200G_Ortho_19mil_092122
	Rabinovich_C2M_200G_Ortho_19mil_092122_Thru.s4p**
	Rabinovich_C2M_200G_Ortho_67mil_092122_FEX
	Rabinovich_C2M_200G_Ortho_67mil_092122_NEXT.s4
	Rabinovich_C2M_200G_Ortho_67mil_092122_Thru.s4p**
	Rabinovich_C2M_200G_Ortho_93mil_092122_FEXT.s4p**
	Rabinovich_C2M_200G_Ortho_93mil_092122_NEXT.s4p
	Rabinovich_C2M_200G_Ortho_93mil_092122_Thru.s4p**
	Rabinovich_C2M_200G_Ortho_135mil_011723 _FEXT.
	Rabinovich_C2M_200G_Ortho_135mil_011723 _NEX
	Rabinovich_C2M_200G_Ortho_135mil_011723 _Thru.s4

** Note: Released on 9/21/22

200G PAM4 C2M Via Length Effect Study Supplement

IL Comparison Between Butterworth and Raise Cosine Filters

* Source: Mellitz_3df_elec_01_220621.pdf

