Interleaver Design for Concatenated Code with the (144,136) Code

Hao Ren, Xiang He

Huawei Technologies

Contributors:

Matt Brown, Huawei

Background

- RS(544,514) has been adopted for 200G/lane AUIs (C2C and C2M).
 - See <u>dambrosia 3dj 01a 230116.pdf</u> and <u>motions 3dfdj 230117.pdf</u>.
- Concatenated code with 4x interleaved RS(544,514) as the outer code is under discussion.
 - bliss 3df 01b 2211, farhood 3df 02b 2211 both proposed BCH/Hamming inner codes with RS outer code.
- Interleaver between outer and inner code can randomize the errors from inner code decoders, improving overall coding gain, as analyzed in <u>bliss 3df 01a 220517</u>.
 - Convolutional interleaver is usually used for block codes to minimize latency for relatively high interleaving depth.
 - Convolutional interleaver with depth of 12 RS codewords was proposed in <u>farhood 3df 02b 2211</u> for Hamming(128,120).
- A convolutional interleaver for binary code (144,136) is proposed in this contribution.
 - Questions were raised during Bangkok meeting on how to design the convolutional interleaver on this code.
 - Effective interleaver depth is over 12 RS codewords, with latency of 76.8ns (800 GbE).

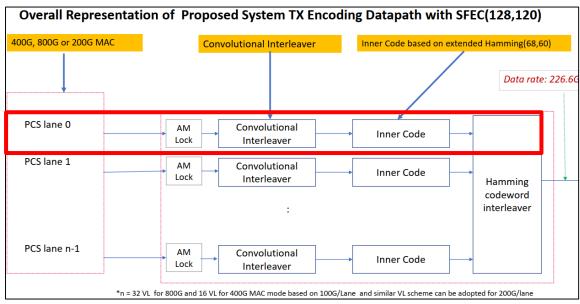
Things to be Considered when Designing Interleaver

Interleaving depth and performance

- Hamming(128,120) uses a convolutional interleaver based on number of RS-symbols in an inner code.
- Convolutional interleaver for (144,136) can work on blocks longer than RS-symbols.
- Both codes can have high interleaving depth, enough to randomize error distribution from inner code.

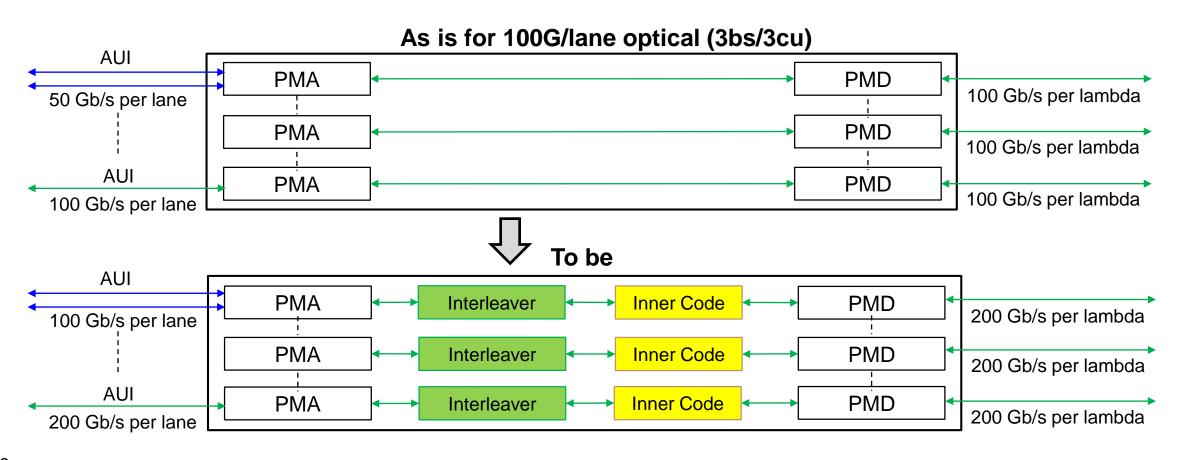
Supports 200/400/800/1600 GbE

- All Ethernet rates that could utilize 200G/lane PMDs should be supported.
- Interleaver design based on the common part across all rates can simplify implementation and specification.

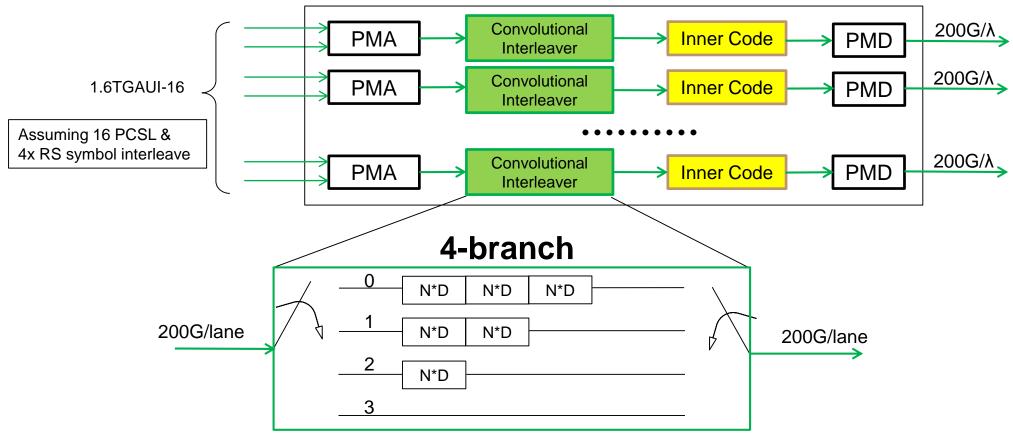

Breakout support

Minimize the logic required to support breakout.

Ethernet Rate (GbE)	PMD Lane Rate (in .3dj)	Number of RS Codewords
200		2 (or 4?)
400	0000//	2 (or 4?)
800	200G/lane	4
1600 <i>(TBD)</i>		4

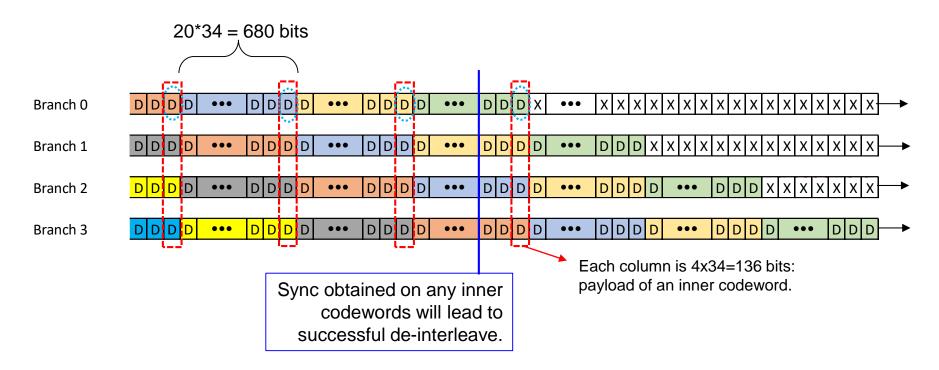

Issues for (128,120) Interleaver: Designed over 25Gb/s PCS Lanes

- Interleaver and encoder per PCS lane design
 - Both interleaver and encoder are performed based on 25Gb/s PCS lanes, which is not forward-looking.
 - 1.6 TbE does not have any reason to use 25Gb/s PCS lanes. 100Gb/s PCS lane is more reasonable. (gustlin 3dj 01b 230206)
 - Padding is proposed to have integer PLL design. (<u>farhood 3dj 01a 230206</u>)
- Redesign is required to support potential 100Gb/s PCS lanes.
 - AM locking over 100G/lane PCS is different from 25G/lane.
 - Convolutional interleaver requires redesign for 100G/lane with different delay parameters.



Breakout Support of Inner Code Could Work at Per Lambda

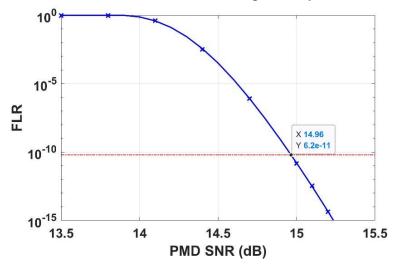
- Each 200G/lane PMA/PMD in the module has its own inner code encoder(s)/decoder(s)/interleaver(s).
 - Advantage: Naturally supports breakout as no regrouping/distribution is required over multiple lambdas.
 - Works for both 100G/lane and 200G/lane AUIs, supporting $2x100G \leftarrow 2x100G$, $2x100G \leftarrow 1x200G$ and $1x200G \leftarrow 1x200G$ interop.



Convolutional Interleaver Design for Binary (144,136)

- Convolutional interleaver is a general interleaving method that could support any block codes.
 - Different code may have different numbers for N, D and branches.
- A 4-branch convolutional interleaver is proposed for (144,136) code.
 - Round-robin distribution based on D = 34b blocks. N = 2720/34/4 = 20.
 - For each group of 4 codewords in PCS, each convolutional interleaver gets 4*5440/8 = 2720b.

Convolutional Interleaver Design for Binary (144,136), continued


- D = 34b, each column of 4 blocks form an inner codeword.
 - If PCS has only 2 codewords, D could be 17 bits and number of branches is increased to 8.
 - Worst case of tailing bits in each D block can still guarantee an equivalent interleaving depth of more than 12 RS codewords.
- Synchronization of inner code can guarantee successful de-interleave.
 - Inner code synchronization can use self-sync methodology similar as in Clause 74.
 - Does not rely on AM from PCS or additional AM inside modules, simplifies logic inside module.

Performance Analysis

- Latency can be evaluated based on number of RS codewords.
 - We recommend to bypass the interleaver for low-latency applications.

Ethernet Rate (GbE)	# of RS CWs in PCS	Interleaver Throughput	# of RS CWs Interleaved	Interleaver Latency, ns	SNR, dB	Pre-FEC BER
200	2	200G	16	358.4	14.96	4.6E-3*
200	4		16	307.2		
400	2		16	179.2		
400	4		16	153.6		
800	4		16	76.8		
1600 <i>(TBD)</i>	4		16	38.4		

* Using **<u>sub-optimal</u>** soft-decoding method for faster simulation.

Performance Analysis

Code	Pre-FEC BER	SNR, dB	Code Rate R (relative to 64B/66B)	NCG Penalty 10log(R), dB
(144,136)	4.6E-3	14.96	103.125/112.5	-0.378
(128,120) + padding	4.8E-3*	14.91	103.125/113.4375	-0.414

^{*}From farhood_3df_02b_2211

NCG difference =
$$(14.96 - 14.91) - [-0.378 - (-0.414)] = 0.014 dB$$

- Due to 1% more overhead, the NCG of "(128,120)+padding" is only 0.014 dB higher than (144,136).
 - 1% higher overhead leads to performance degradation of optical transceivers, as raised in welch 3df 01a 221011.
 - Considering the bandwidth limitation, actual performance needs to be analyzed between 225 Gb/s and 226.875 Gb/s for (144,136)
 and (128,120)+ padding, respectively.
- 1% Higher data rate also leads to higher power (optical, AD/DA, etc).
 - Potentially impact future CPO and NPO applications where inner code could be integrated in ASIC.
 - Additional optical transceiver power due to higher overhead could be significantly more than the inner FEC decoder power.
 - It is more economic if we allocate this additional power to boost the soft-decoding gain.
 - Using <u>more optimized</u> soft-decoding method will <u>increase the over all coding gain by more than 0.014dB</u>.

Future Integration of Concatenated Code Considerations

- The (128,120) code will result in more complex design.
 - (128,120) has a factor of 3 in the divisor that requires a frac-N PLL.
 - For an oDSP for 4 or 8 lanes, it is not a big deal.
 - For highly integrated ASIC (e.g. 512-lane digital switching chip) it will complicate things.
 - Dividing reference clock (156.25MHz) by 3 will cause worse jitter.
 - Combined with higher power due to 1% higher overhead, it can be problematic for CPO or NPO.
- The (144,136) code enables integer PLL design and has lower power.

Conclusions

- A convolutional interleaver for binary code (144,136) is proposed.
 - It does not rely on 25G/lane PCS lanes.
 - It does not rely on additional alignment method to de-interleave.
 - It supports breakout.
 - The overall performance is on par comparing with Hamming(128,120) + padding.
 - The overall power is lower than (128,120) + padding, due to simpler design and lower data rate.
- We propose to adopt binary code (144,136) as the inner code for concatenated code for 200G/lane optical PMDs.
 - The code supports integer PLL without additional padding.
 - The code is friendly to implementation to both oDSP (for pluggables) and host ASIC (for CPO).

Thank you