Bypass Options for Concatenated FEC

Xiang He, Matt Brown

Huawei Technologies

IEEE P802.3dj Task Force, February 2023 Session

Cedric Lam, Google Vishnu Balan, NVIDIA Hao Ren, Huawei

Introduction

- Latency is critical to AI and ML applications.
- Power limitation is another critical issue for B400G in data center network.
- This contribution proposes options on how to improve these aspects for where optical PMD BER level is well controlled.

Background

- RS(544,514) has been adopted for 200G/lane AUIs (C2C and C2M).
 - See motions 3df 2211.pdf
- Concatenated code with RS(544,514) as the outer code is under discussion.
 - <u>bliss 3df 01b 2211</u>, <u>farhood 3df 02b 2211</u> both proposed BCH/Hamming inner codes with RS outer code.
- Low latency and low power are two critical requirements for certain applications.
 - Latency is key for ML/AI with short fiber links, as in <u>simms_3df_01_2210</u>
 - Data center network generally is tight on power and latency, stone b400g 01a 210301, lam b400g 01a 210720
- The architecture of concatenated FEC enables lower latency and power than segmented because RS(544,514) is not terminated inside optical modules.
- This contribution discusses options to further lower latency and power for concatenated FEC.

Revisit: Latency of Inner Code Decoder

- The decoding latency of inner BCH/Hamming code itself is minimal.
 - Short BCH/Hamming decoding latency is as low as 1~10ns depending on algorithm (HD or SD).
 - 800 GbE as defined in P802.3df uses 4×212.5 Gb/s throughput RS(544,514) decoders, with a decoding latency of ~75ns.
 - See page #8 of <u>he_3df_01_220517</u>.
 - The latency of the inner code itself is 1.3% –12.8% of RS(544,514).

	FEC code		Operating rate	Latency ¹ , ns	Relative Area
Outer Code	Hard Decision RS	2-way RS(544,514)	850G	51.2	~4.00
		2-way RS(544,514)	212.5G	89.6	1.00 (Synthesized, 7nm)
Inner Code	Hard Decision BCH/Hamming	BCH(144,136)	225G	1.6	0.003
		eBCH(76,68)	~240G ³	1.6	0.002
	Soft Decision BCH/Hamming (LRP = 6) ²	BCH(144,136)	225G	9.6	0.17
		eBCH(76,68)	~240G ³	9.6	0.11

1: Latency is evaluated based on 1.25 GHz clock frequency (0.8 ns per cycle).

2: Latency and/or area will go higher along with the performance if more LRP is selected.

3: Extra overhead is considered for single carrier 800Gb/s coherent transceivers.

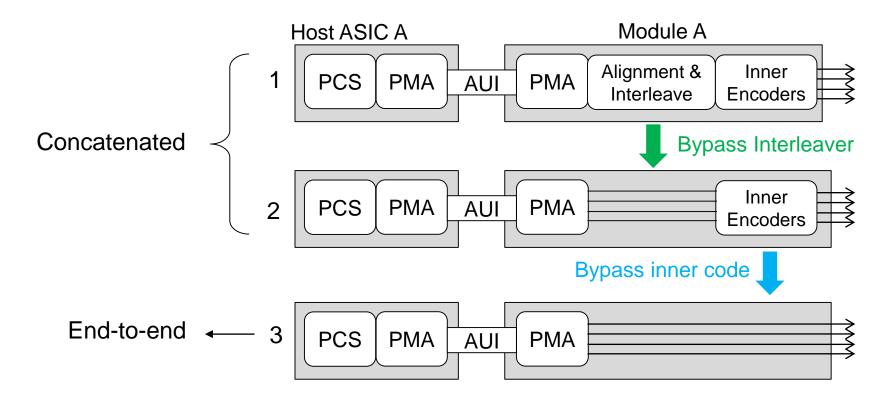
he_3df_01a_220308.pdf

Interleaver for Concatenated FEC

- Interleaver between outer and inner code can randomize the errors from inner code decoders. .
- For block codes like RS FEC, convolutional interleaver is often used to lower latency.
 - Various convolutional interleavers have been discussed in the task force, with latencies varying from ~20ns to over 100ns, as in farhood 3df 02b 2211.
 - The interleaving depth of at least 12 RS codeword is recommended in multiple contributions.

SFEC	Baud Rate	Convolutional Inter-leaver	Operating Mode	Encoder + decoder Latency	Pre-FEC BER
(128,120)	113.33Gbaud	High Latency mode	400G	~140ns	~4.8E-3
			800G ETC (2 way interleaved)	~140ns	~4.8e-3
			800G (4 way interleaved)	~ 56ns	~4.8E-3
			200G	~280ns	~4.8e-3
		Low Latency mode ** results in 0.25dB penalty in coding gain	400G	~56ns	~4.0E-3
			800G ETC (2 way interleaved)	~56ns	~4.0e-3
			800G (4 way interleaved)	~ 25ns	~4.0E-3
			200G	~110ns	~4.0e-3

Summary of SFEC (128,120) + Convolutional Interleaver : BER and Latency trade off for various operating modes


Tradeoff Between Latency and Pre-FEC BER Threshold

- Inner code itself does not require the convolutional interleaver to work.
 - Concatenated code performance without convolutional interleaver has been analyzed in <u>he 3df 01 2211.pdf</u>.
- For links that has lower pre-FEC BER levels, convolutional interleaver can be bypassed.
 - 800 GbE PCS layer provides 4 codewords interleaving (likely for 1.6 TbE, too), which can provide moderate protection.
- For links that meets RS(544,514) threshold, the inner code can be bypassed completely.
- Tradeoff between latency and pre-FEC BER threshold can be made.
 - Bypass configuration can either be static or configurable.

BER Threshold	Bypass Convo. Interleaver	Bypass Inner Code	Inner Code Decoder: Soft or Hard Decision	Inner Code Total Latency
4.6E-3	No	No	Soft	50~300 ns
3.3E-3	Yes	No	Soft	5~10 ns*
6.1E-4	Yes	No	Hard	1~2 ns*
2.4E-4	Yes	Yes**		0 ns*

*Based on 200G/lane throughput, same for all Ethernet rates from 200 GbE to 1.6 TbE. **Bypassing inner code will lead to different PMD rate.

High-level Block Diagrams, 800 GbE Example

- 1. Both TX/RX modules may need to perform alignment and deskew depending on the interleaver design.
 - The alignment and deskew functions will require more logic and chip area (and power) inside module.
- 2. Interleaver bypassed. No alignment is required in both TX and RX modules. Lower latency and power.
 - Inner code can use self-sync to lock to the codeword boundaries.
- 3. Inner code bypassed. Essentially an End-to-End FEC.

Summary

- Concatenated code latency can be drastically reduced if the convolutional interleaver is bypassed.
 - Convolutional interleaver is also a key contributor to power consumption for concatenated code.
- The standard should allow for bypassing of the convolutional interleaver.
 - The concatenated code architecture should allow for interleaver bypass.
 - Inner code may be bypassed when BER level is within RS(544,514) threshold.
 - Methods to control the different bypassing options can be provided.
 - Static based on PMD or configurable.

Thank you