/LUMENTUM

Numerical Simulation of Polarization Multiplexing for Suppressing FWM

Ernest Muhigana, Shigehisa Tanaka, Lumentum Nobuhiko Kikuchi, Hitachi Ltd. R\&D Group

IEEE P802.3dj $200 \mathrm{~Gb} / \mathrm{s}, 400 \mathrm{~Gb} / \mathrm{s}, 800 \mathrm{~Gb} / \mathrm{s}$, and 1.6 Tb/s Ethernet Task Force January, 2023 LTD-0054

Supporters

- Rangchen (Ryan) Yu (SiFotonics)
- John Johnson (Broadcom)
- Xiang Liu (Huawei)
- Frank Chang (Source Photonics)
- Roberto Rodes (Coherent)

Outline

- Introduction
- Longitudinal ZDW Fluctuation
- Numerical Simulation using "1.6T-LR8" system as example -1.6 TR8 is solely used for illustration purposes as it is not part of the adopted objectives of the IEEE P802.3dj
- Summary

Background - Suppression of Four Wave Mixing (FWM)

- Fiber Four Wave Mixing (FWM) is one of a key degradation factor to realize IM/DD 800G-LR4 and 1.6T-LR8 links
- Polarization arrangement "XYYX" is proposed by liu 3df 01b $2207^{[1]}$ to reduce FWM crosstalk.
- Combined allocation of dispersion and FWM penalty is proposed in liu 3df 01a 2210 ${ }^{[2]}$ and adopted in rodes 3df $2211{ }^{[3]}$.
- This presentation is a supplement of lewis 3df $012210^{[4]}$.
- We explain the effect of the longitudinal fluctuation of ZDW in optical fiber, which narrows FWM gain bandwidth of practical fibers, and propose its numerical modeling.
- The effectiveness of previously proposed 8 -channel polarization arrangement "XYYXGXYYX" is confirmed by numerical simulation for 1.6T-LR8 link using practical O-band parameters.
[1] X. Liu, "Effective suppression of inter-channel FWM for 800G-LR4 and 1.6T-LR8 based on 200Gb/s PAM4 channels," IEEE 802.3df Plenary meeting, July 2022.
[2] X. Liu, "Assessment of the combined penalty from FWM and dispersion in 800G-LR4 based on 224Gb/s PAM4," IEEE 802.3dj Electronic Session, Oct. 2022.
[3] R. Rodes, "Refined 800G-LR4 IM/DD Optical Specifications," IEEE 802.3df Plenary Meeting Nov. 21, 2022.
[4] D. Lewis, "Experimental Verification of Polarization Multiplexing for Suppressing FWM," IEEE 802.3df Electronic Session, Oct. 2022

Longitudinal ZDW Fluctuation - Motivation

- Experimental observation shows that FWM bandwidth/efficiency greatly varies from fiber to fiber.
- lam 3df 01a 220524 ${ }^{[5]}$ reports 3-dB FWM bandwidth of 1 to 16 nm from fiber to fiber. - lewis 3df $012210^{[4]}$ reports only a single fiber out of 13 showed strong FWM.
- It is mainly due to the longitudinal ZDW fluctuation in fiber. In the calculation of FWM penalty, fiber ZDW is typically assumed to be constant over fiber span (=worst case fiber), which may lead to excessive outage than the practical cases.

Longitudinal ZDW Fluctuation - Measurement

- So far, various measurement of fiber longitudinal ZDW/dispersion mapping have been performed, for example, by using "pulsed FWM technique."
- Longitudinal ZDW/dispersion is actually not constant, as shown below.
- It is induced by the longitudinal change of fiber structural parameters such as mode diameter.
- Longer fibers show larger ZDW change (thus, short fibers are used for non-linear experiments).
- Various measurements show ZDW shift of up to a few nano-meters in $10-\mathrm{km}$ fibers.

Fig. 4. Calculated chromatic dispersion map and Brillouin shift of the dispersion-shifted fiber from Manufacturer A quoted in Fig. 3. The analysis window is 2 km wide ($\simeq 5$ signal periods) to provide a very low uncertainty in the local value of the dispersion.
[5] M. Gonzalez-Herráez et al., "Simultaneous PositionResolved Mapping of Chromatic Dispersion and Brillouin Shift Along Single-Mode Optical Fibers," IEEE PTL Vol. 16, No.4, pp 1128-1130, Apr. 2004.
LUMENTUM

Fig. 2 Length Distribution of λ for the first 10 km fiber determined from calculation and from cutback measurements using the freq.-domain phase shift system
[6] J.B. Schlager, "Zero-Dispersion Wavelength distribution in Optical Fibers From CW Four-Wave Mixing," Conference
Proceedings. LEOS 1998 Annual Meeting (Cat. No.98CH36243), pp. 308-309, Feb. 1998.

Fig. 3. Estimation of accuracy: retrieved ZDW map (dashed line), minimum and maximum uncertainties (dotted line), with 95% of the events located between the solid lines. At ± 2 standard deviations corresponding to 95% of confidence, uncertainties on D_{S} and β_{4} are $D_{S}=0.027 \pm 0.003 \mathrm{ps} / \mathrm{nm}^{2} / \mathrm{km}$, $\beta_{4}=-3.6 \pm 0.610^{-56}{ }_{5}{ }^{4} \mathrm{~m}^{-1}$
[7] Mussot et al., "Zero-Dispersion Wavelength Mapping in Short Single-Mode Optical Fibers Using Parametric Amplification," IEEE PTL Vol.18, No. 1 pp. 22-24, Jan 2006.

Longitudinal ZDW Fluctuation - Fiber model

- We introduce a simple fiber model with "linear longitudinal ZDW-shift" to show the relationship of FWM bandwidth and ZDW change
- Amount of ZDW shift for fiber (length L) is defined as $\left(\lambda_{0}(\mathrm{~L})-\lambda_{0}(0)\right.$), it can be positive or negative.
- FWM efficiency is calculated by Split-Step Fourier-based simulator
- Assuming O-band fiber parameters (Loss: $0.3 \mathrm{~dB} / \mathrm{km}, \mathrm{S}_{0}: 0.093 \mathrm{ps} / \mathrm{nm}^{2} / \mathrm{km}, \mathrm{A}_{\mathrm{eff}}: 70 \mathrm{~mm}^{2}$) .
- A pump (+10 dBm) is located at the average ZDW of a $10-\mathrm{km}$ test fiber with/without ZDW shift.
- A signal (0 dBm) is located one side of the pump with detuning D and FWM power generated on the other side is measured, by changing D .

Fig. Longitudinal ZDW variation of fiber with linear ZDW-shift
(This example shows the case of ZDW shift is +2 nm)

Longitudinal ZDW Fluctuation - Simulation results

- FWM gain bandwidth is shown to reduce greatly with longitudinal ZDW shift.
- Even with $0.5-\mathrm{nm}$ shift of ZDF, 3-dB FWM gain bandwidth drops from 18 to 6.5 nm .
- For example, introduction of uniform distribution of maximum ZDW shift within 0 to 2 nm reduces the chance of FWM $\mathrm{Bw}>10 \mathrm{~nm}$ to $1 / 10$.
- Reasonably matches to the experimental observations.

Fig. FWM efficiency vs. Pump-Signal detuning (Pump is located at average ZDW)

Fig. ZDW shift vs. FWM gain bandwidth

Longitudinal ZDW Fluctuation - Discussion

- Practical fibers with longitudinal ZDW fluctuation will show lower outage of 1/2~1/4, due to reduced FWM bandwidth.
- The referenced data in slide 6 is nearly 20 years old, and the modern Ethernet fibers are pretty much improved in the uniformity of the average ZDW.
- But it does not necessarily mean that its longitudinal ZDW fluctuation is completely negligible, or its FWM gain bandwidth can be considered as the theoretical maximum value.
- To avoid overestimation of FWM outage, it is better to take those of the modern fibers into the consideration.
- Actual 10-km fiber can be multiple segments of shorter fibers with the length of a few kilometers.
- Its FWM suppression effect in 400G-ER4 is pointed out by Rang-Chen Yu, Frank Chang, Xiang Liu and Qirui Fan (will appear in future contribution). It should also be considered.

Numerical Simulation of 1.6T-LR8 System - Motivation

- In lewis 3df 01 2210 ${ }^{[4]}$,
- Simple rule of thumb for FWM Suppression is introduced and the concept of sub-band for local FWM suppression considering limited FWM gain bandwidth.
- Polarization arrangement "XYYXGXYYX" (G: Guard grid) is suggested, which can suppress FWM for any sub-bands up to five-successive wavelength grids ($\sim 11.25 \mathrm{~nm}$ in $400-\mathrm{GHz}$ spaced LAN-WDM case), which can reduce FWM outage probability.
- Numerical simulation is performed to show its effectiveness
- In-house optical transmission simulator based on Split-Step Fourier method (like VPI) is used to evaluate FWM outage probability via Monte Carlo Analysis.
- Time-variant outage events (such as PMD) and invariant ones are mixed in this simulation, and all the transceiver and fiber parameters are randomized once per a single run to estimate total signal outage probability.

Numerical Simulation of 1.6T-LR8 System - Simulation Setup

- Most parameters are based on rodes 3df 2211 ${ }^{[3]}$
- O-band IM-DD 112.5 GBaud PAM4 TRX is assumed
- Emulates EML or LN-MZ, Alpha is set to 0 , ER is fixed to 4.75 dB
- OMA: Gaussian distrib. centered at 4.4 dBm (truncated at 3.5 and 5.5 dBm)
- AOP: Calculated from OMA and ER, total AOP is limited at $14.5(=11.5+3) \mathrm{dBm}$
- To evaluate FWM penalty alone, fiber chromatic dispersion is optically compensated channel by channel, before launching into Rx. Wide-band analogue PIN receiver model without FFE is employed, which is sufficient for evaluating FWM crosstalk only.
- BER threshold is set to 4.0E-3.
- Channel frequency: Uniform distribution within passband ($400-\mathrm{GHz}: \pm 0.5 \mathrm{~nm}$) .

Fig. Distribution of OMA

Fig. Distribution of AOP

Numerical Simulation of 1.6T-LR8 System - Simulation Setup (Cont.)

- 10-km standard SMF

- Average ZDW: Single Gaussian (center: $1313 \mathrm{~nm}, \mathrm{~s}: 2.5 \mathrm{~nm}$) truncated within 1300-1324 nm.
- PMD: Rotating waveplate model (step=100 m) with PMD of $0.05 \mathrm{ps} / \mathrm{sqrt}(\mathrm{km})$
- Loss: $0.3 \mathrm{~dB} / \mathrm{km}, \mathrm{S}_{0}: 0.093 \mathrm{ps} / \mathrm{nm}^{2} / \mathrm{km}, \mathrm{A}_{\text {eff: }}: 70 \mu \mathrm{~m}^{2}$, Nonlinear coefficient: 2.6E-24
- LR8 wavelength plan with $400-\mathrm{GHz}$ spacing (only for test, not proposals)
- 400-GHz spacing to keep chromatic dispersion range almost the same as LR4 in rode 3df 2211[3] (1295.56/1300.05/1304.58/1309.14 nm).
- From the distribution of average ZDW and wavelength plan, FWM outage probability is expected to be low, since it only occurs when average ZDW is $<1308 \mathrm{~nm}$, which is the 2σ tail of Gaussian distribution.

Table. Example LR8 wavelength plan

ch0	1291.10 ± 0.5	-	-	-	X
ch1	1293.32 ± 0.5	X	X	X	Y
ch2	1295.56 ± 0.5	X	Y	Y	Y
ch3	1297.80 ± 0.5	X	X	Y	X
ch4	1300.05 ± 0.5	X	Y	X	G
ch5	1302.31 ± 0.5	X	X	X	X
ch6	1304.58 ± 0.5	X	Y	Y	Y
ch7	1306.86 ± 0.5	X	X	Y	Y
ch8	1309.14 ± 0.5	X	Y	X	X

Channels ch1 ch3 ch5 ch7
Channels ch0 ch2 ch4 ch6 ch8

Fig. Distribution of Average ZDW (Center: 1313 nm,

Example) FWM Penalty in 1.6 T-LR8 with $400-\mathrm{GHz}$ spacing

- To accelerate the simulation, we skip calculation when randomly generated average ZDW>1308 nm, by assuming FWM penalties are zero.
- The FWM outage probabilities of XYYXGXYYX and XYYXXYYX is low, and that of the latter is around 1E-5 with 0.3 dB penalty. Both are further lowered by the introduction of random ZDW shift, which suggest the acceptably low FWM outage probability in practical situation.
- Some worst case outage probabilities with the combination of ZDW and channel frequencies are shown in

Fig. FWM outage probability vs. channel polarization arrangement

Summary

- Effect of longitudinal ZDW fluctuation is explained.
- Previous measurements show longitudinal ZDW-shift of a few nano-meter in $\sim 10 \mathrm{~km}$ fiber, which leads to narrower FWM bandwidth of real optical fiber than theoretical model.
- Its consideration seems to be important to avoid overestimation of FWM penalty.
- However, its statistical data for modern Ethernet fibers does not seem to be reported yet.
- The effectiveness of "XYYXGXYYX" polarization arrangement for 8-wavelength IM/DD PAM system (G: Guard grid) is verified by numerical simulations. - Simulation results suggest the possibility of 1.6T-LR8 with low FWM outage probability (<0.3 dB penalty at 10^{-5}).

Thank you

/LUMENTUM

Appendix; Comparison of FWM Outage Probability

- The validity of our numerical simulation is confirmed by comparing FWM penalty distribution of XYYX case with wosrt combination of ZDW at the center of four chnnels ($800-\mathrm{GHz}$ spacing) to that of rodes 3df $2211^{[3]}$.
- Both results show good agreement with 0.2 dB error in FWM penalty

Simulation conditions

Most parameters are based on [3]:

- $\mathrm{OMA}=5 \mathrm{dBm}, \mathrm{AOP}=5.6 \mathrm{dBm}, \mathrm{ER}=4.0 \mathrm{~dB}$
- Channle wavelength: $1295.56 \mathrm{~nm}, 1300.05 \mathrm{~nm}, 1304.58 \mathrm{~nm}, 1309.14 \mathrm{~nm}$
-10 km fiber, ZDW is fixed at 1302.35 nm , no ZDW shift
- PMD $=0.05 \mathrm{ps} / \mathrm{sqrt}(\mathrm{km})$ with rotating wave plate model (step 100m)
- 2000 runs each

1600 runs with $\mathrm{PMD}=0.05 \mathrm{ps} / \mathrm{sqrt}(\mathrm{km})$,

FWM Outage Probability[3]

Appendix; Worst-case FWM Outage Probability in 1.6T-LR8

- The worst case FWM outage probabilities in the combinations of ZDW and channel frequency are evaluated based on the example LR8 wavelength plan.
- Signals are exactly aligned on the center of their passband.
- ZDW matches one of channels or midpoints of two adjacent channels, as shown in the table below.

Table. Example LR8 wavelength plan and the worst case ZDW locations

ZDW	ch0	1291.10	-	-	-	X
	ch1	1293.32	X	X	X	Y
	ch2	1295.56	X	Y	Y	Y
	ch3	1297.80	X	X	Y	X
	ch4	1300.05	X	Y	X	G
Ch5 \longrightarrow	ch5	1302.31	X	X	X	X
Ch6	ch6	1304.58	X	Y	Y	Y
$\xrightarrow{\text { Ch7 }}$	ch7	1306.86	X	X	Y	Y
	ch8	1309.14	X	Y	X	X

$-\mathrm{OMA}=5 \mathrm{dBm}, \mathrm{AOP}=5.6 \mathrm{dBm}$ $-E R=4.0 \mathrm{~dB}$

- 10 km fiber, no ZDW shift
- PMD = 0.05 ps/sqrt(km), PMD alone is the source of randomness.
- 500 runs each.
- Fiber chromatic dispersion is optically compensated and FWM

Appendix; Worst-case FWM Outage Probability

- Both XYYXXYYX and XYYXGXYYX shows low FWM outage when ZDW overlaps on long wavelength region (Ch8-Ch6).
- Somewhat large FWM penalty appear when ZDW exactly matches Ch55 (1303.44 nm) and/or Ch5 (1302.31 nm), but such probability is very low considering the ZDW distribution of modern Ethernet fibers.

Fig. Worst case FWM outage probabilities (cont.)

Appendix - Extension to Eight Waves (M=8)

- Without guard grid $(N=M)$, maximum $N($ or $M)$ satisfies the FWM suppression rule is 4.
- Fully satisfying the FWM rule for $M=8$ with guard band requires quite wide wavelength range.
- Introduction of "sub-band (K-successive grid, $\mathrm{K}<\mathrm{N}$)" seems to be reasonable.
- FWM is locally-suppressed at any sub-bands over the wavelength band.
- "Sub-band width K K f " > "FWM bandwidth" seems to assure FWM suppression
(Ex.3) SPPSSPPS $(N=M=8) \quad$... $N G$, some sub-bands are weak to $F W M$, even $K=4$.

Appendix - Proposal for Extension to Eight Waves (M=8) lewis 3df $012210^{[4]}$

- "SPPSGSPPS" $(\mathrm{N}=9, \mathrm{M}=8)$ is a very special case for FWM suppression

1. Up to any $\mathrm{K}=5$ sub-bands, the FWM suppression rule is satisfied.

SPPSG: OK, PPSGS: OK, PSGSP: OK
... If $\Delta \mathrm{f}=800 \mathrm{GHz}, \mathrm{K}=5$ sub-band width is $4 \mathrm{THz}(\sim 22 \mathrm{~nm})$, which may be wider than the FWM bandwidth of the worst case fiber (16 nm).
2. All the FWM components of any $\mathrm{K}=5$ sub-bands overlapping to any signals has orthogonal polarization to it even outside of the sub-bands.

3. It can be further extended limitlessly, like "SPPSGSPPSGSPPSG...."

Thank you

/LUMENTUM

