Symbol-muxing PMA architecture proposal

Adee Ran, Cisco

Xiang He, Huawei

Support

- Phil Sun, Credo
- Dave Cassan, Alphawave
- Henry Wong, Alphawave
- Zvi Rechtman, NVIDIA

Outline

- Motivation
- Goals
- Previous work
- Proposed PMA architecture
- Backup material
- FEC performance comparisons
- Detailed diagrams and descriptions
- Other methods considered
- PMA partitioning examples
- Proposed new PMA clause structure

Motivation

- In P802.3dj we are defining new PMDs and AUIs for old PCSs
- The result is an 8:1 PMA muxing ratio (e.g., 32:4)
- We also assume complex receivers that can generate strongly correlated errors
- The bit-muxing PMA which we have been using for multiple generations of Ethernet is breaking down under these conditions
- In the worst case (200G/400G), with precoding, the SNR penalty is $\mathbf{1 . 1} \mathbf{~ d B}$ and the BER penalty is $\times 5$ (a reduction to 20% is required compared to what we assumed) (see backup)
- Without precoding, the penalty goes through the roof
- This would narrow down our channel range and/or increase SerDes complexity
- This project is challenging in many ways - we must improve our tools!

Goals

- A PMA architecture for all $200 \mathrm{~Gb} / \mathrm{s}$ per lane* interfaces
- Compatible with existing PCSs: 200GBASE-R, 400GBASE-R, and 800GBASE-R (1, 2, and 4 lanes, respectively)
- Evolving 1.6TBASE-R PCS also in mind, but not addressed in this presentation
- Enabling strong FEC performance with significantly correlated errors
- Supporting rate conversion between $200 \mathrm{~Gb} / \mathrm{s}$ per lane (new devices) and $100 \mathrm{~Gb} / \mathrm{s}$ per lane (existing devices)
- Enabling efficient design, including modules and retimers
- As protocol agnostic as possible
- Avoid full deskew and alignment of all PCSLs
* In this presentation, the unqualified term "lane" means PMA lane, as opposed to PCSL lane (PCSL)

Previous work

- Bit-muxing PMAs have been used since 40G Ethernet (Clause 83), and recently in 200G and 400G (Clause 120) and 800G (Clause 173)
- ran 3df 01a 220518 highlighted issues with bit-muxing for $200 \mathrm{~Gb} / \mathrm{s}$ per lane interfaces (8:1 bit muxing)
- wang 3df 01b 220928 studied 2:1 muxing for 2-way and 4-way codeword interleaving
- ran 3df 01a 2211 compared the effect of $8: 1$ bit-muxing and symbolmuxing on FEC performance with correlated errors
- See backup section for summary of results
- ran 3df 02a 2211 presented a symbol-muxing PMA concept
- he 3df 012211 analyzed the effect of bit/symbol muxing with multi-part link and concatenated FEC

PMA architecture - scope

- In 200GbE, 400GbE, and 800 GbE , the PCS distributes symbols* to PCSLs; each PCSL carries $25 \mathrm{~Gb} / \mathrm{s}$
- There are existing physical interfaces (AUIs) with up to $100 \mathrm{~Gb} / \mathrm{s}$ per lane, bitwise muxed with a ratio of 4:1
- For example, 32:8 PMA for 800GAUI-8
- The PMAs for new $200 \mathrm{~Gb} / \mathrm{s}$ per lane AUls should include:
- PMAs with 8:1 ratio mux/demux (below the PCS/XS)
- PMAs with 2:1 ratio mux/demux (conversion from 4:1 muxing to 8:1 muxing and vice versa, in modules and gearboxes)
- PMAs with 1:1 ratio (retimers)
* In this presentation, the unqualified term "symbol" means RS symbol (10 bits), as opposed to PAM4 symbol

Bit or symbol muxing for $200 \mathrm{~Gb} / \mathrm{s}$ signaling?

- Bit muxing

- Used in existing 200G, 400G, and 800G PMAs (for 200G and 400G, 50 and 100 Gb /s per lane AUIs)
- Simple and protocol agnostic
- High muxing ratio degrades the FEC performance with correlated errors; with 8:1 the penalty is unacceptable (see ran 3df 01a 2211)
- With highly correlated errors on high-loss AUI links, even 2:1 bit muxing causes a degradation (see wang 3df 01b 220928).
- Symbol muxing
- Enables good FEC performance even with strong error correlation
- To maximize FEC performance with bursts, we should maximize the temporal separation between symbols of the same FEC codeword on each lane
- Round-robin distribution from FEC codeword to symbols on each lane is optimal
- Compatibility with existing AUIs requires conversion from/to bit muxing
- Requires knowledge of symbol boundaries - somewhat protocol aware
- Current and future high-speed SerDes have large logic content (DSP, FEC) - symbol muxing logic is small in comparison

New PMA concept: symbol-pair muxing

- The PCS checkerboard pattern ensures each pair of successive symbols contains symbols from two codewords
- In 800GBASE-R, taking one symbol-pair from each flow gives us symbols from all four codewords
- In 200/400GBASE-R, taking one symbol-pair from each lane gives us symbols from both codewords
- In order to get a consistent order on each output lane, we need to convert the checkerboard pattern into a striped pattern (see next slide)
- This can be done in a couple of ways
- From the striped pattern, symbols are muxed in pairs to an output lane
- In the receive direction, alignment on any AM gives us the symbol-pair boundary
- A more detailed description can be found in the backup section
- This method was also referred to as "half-blind symbol muxing"

Symbol-pair muxing illustration (800GBASE-R)

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
	4 LO	L1	L2	L3	L4	L5	L6	L7	L8	L9	L10	L11	L12	L13	L14	L15	L16	L17	L18	L19	L20	L21	L20	L21	L24	L25	L26	L27	-28	L29	L30	L31
万-	3 LO	L1	L2	L3	L4	L5	L6	L7	L8	L9	L10	L11	L12	L13	L14	L15	L16	L17	L18	L19	L20	L21	L20	L21	L24	L25	L26	L27	-28	L29	L30	L31
है	2 LO	L1	L2	L3	L4	L5	L6	L7	L8	L9	L10	L11	L12	L13	L14	L15	L16	L17	L18	L19	L20	L21	L20	L21	L24	L25	L26	L27	-28	L29	L30	L31
心	1 LO	L1	L2	L3	L4	L5	L6	L7	L8	L9	L10	L11	L12	L13	L14	L15	L16	L17	L18	L19	L20	L21	L20	L21	L24	L25	L26	L27	-28	L29	L30	L31
First	0 LO	L1	L2	L3	L4	L5	L6	L7	L8	L9	L10	L11	L12	L13	L14	L15	L16	L17	L18	L19	L20	L21	L20	L21	L24	L25	L26	L27	-28	L29	L30	L31

Symbol-pair muxing illustration (800GBASE-R)

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
	4 LO	L1	L2	L3	L4	L5	L6	L7	L8	L9	L10	L11	L12	L13	L14	L15	L16	L17	L18	L19	L20	L21	L20	L21	L24	L25	L26	L27	L28	L29	L30	L31
	3 LO	L1	L2	L3	L4	L5	L6	L7	L8	L9	L10	L11	L12	L13	L14	L15	L16	L17	L18	L19	L20	L21	L20	L21	L24	L25	L26	L27	L28	L29	L30	L31
	2 LO	L1	L2	L3	L4	L5	L6	L7	L8	L9	L10	L11	L12	L13	L14	L15	L16	L17	L18	L19	L20	L21	L20	L21	L24	L25	L26	L27	L28	L29	L30	L31
	1 LO	L1	L2	L3	L4	L5	L6	L7	L8	L9	L10	L11	L12	L13	L14	L15	L16	L17	L18	L19	L20	L21	L20	L21	L24	L25	L26	L27	L28	L29	L30	L31
	0 LO	L1	L2	L3	L4	L5	L6	L7	L8	L9	L10	L11	L12	L13	L14	L15	L16	L17	L18	L19	L20	L21	L20	L21	L24	L25	L26	L27	L28	L29	L30	31
									Conversion from checkerboard to striped pattern																							
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
	4 LO	L1	L2	L3	L4	L5	L6	L7	L8	L9	L10	L11	L12	L13	L14	L15	L16	L17	L18	L19	L20	L21	L20	L21	L24	L25	L26	L27	L28	L29	L30	L31
	LO	L1	L2	L3	L4	L5	L6	L7	L8	L9	L10	L11	L12	L13	L14	L15	L16	L17	L18	L19	L20	L21	L20	L21	L24	L25	L26	L27	L28	L29	L30	L31
	2 LO	L1	L2	L3	L4	L5	L6	L7	L8	L9	L10	L11	L12	L13	L14	L15	L16	L17	L18	L19	L20	L21	L20	L21	L24	L25	L26	L27	L28	L29	L30	L31
	1 LO	L1	L2	L3	L4	L5	L6	L7	L8	L9	L10	L11	L12	L13	L14	L15	L16	L17	L18	L19	L20	L21	L20	L21	L24	L25	L26	L27	L28	L29	L30	L31
	0 LO	L1	L2	L3	L4	L5	L6	L7	L8	L9	L10	L11	L12	L13	L14	L15	L16	L17	L18	L19	L20	L21	L20	L21	L24	L25	L26	L27	L28	L29	L30	L31

Symbol-pair muxing illustration (800GBASE-R)

Functional block diagram: PMA(32:4) (800GBASE-R)

PMA(4:32) is identical to PMA(32:4) placed backwards (i.e., service interface has 4 lanes and interface below has 32 lanes).
Similarly for PMA(8:1) for 200GBASE-R and PMA(16:2) for 400GBASE-R and their inverses, except for appropriate width changes, and only one flow.

Functional block diagram: PMA(8:4) (800GAUI-8 to 800GAUI-4 converter)

PMA(4:8) is identical to PMA(8:4) placed backwards (i.e., service interface has 4 lanes and interface below has 8 lanes).

Similarly for PMA(2:1) for 200GBASE-R and PMA(4:2) for 400GBASE-R and their inverses, except for appropriate width changes, and only one flow.

Converting checkerboard to striped symbol pattern

- Required for creating a round-robin codeword order on the 200G lanes, to maximize burst immunity of the FEC
- One method, illustrated in the backup section, is swapping the symbols of each symbol pair on the odd-numbered PCSLs (in both Tx and Rx)
- Easy to do in a Tx that is co-located with a PCS
- Easy to undo in the Rx
- There are other ways to achieve a striped pattern
- Further study of different options is expected

Muxing constraints

- For 32:4 PMAs (800GBASE-R adjacent to a PCS):
- Each lane contains symbol-pairs from PCSLs alternating between the two PCS flows
- This is the same as in clause 173 , so no new constraints
- For 16:2 and 8:1 PMAs (400GBASE-R / 200GBASE-R adjacent to a PCS):
- No constraints - mux any group of 8 PCSLs in any order
- For 8:4, 4:2, and 2:1 PMAs (gearboxes)
- Each pair of Tx input lanes is muxed into a single Tx output lane
- In 8:4, PCSLs are taken alternately from the two flows
- Each Rx input lane is de-muxed into two Rx output lanes
- Essentially: shuffling PCSLs across physical lanes is not allowed
- For 4:4, 2:2 and 1:1 PMAs (retimers)
- Similar to those of the 8:8 PMA (clause 173) (no new constraints)
- Corresponding requirements for all "backward" PMAs (e.g., 4:32)
- These rules, combined with symbol-pair muxing, result in symbols from each of the codewords appearing on each lane with maximum separation from each other

Specific PMA logic

- For PMAs co-located with a PCS:
- Symbol alignment on the input lane using only common AM content
- Undo the checkerboard
- For "external gearbox" (including gearbox modules):
- Conversion from bit to symbol-pair muxing (100G to 200G per lane)
- Align to symbol-pair boundary using AMs
- Unique-AM identification is required to distinguish even and odd PCSLs
- Conversion from symbol-pair to bit muxing (200G to 100 G per lane)
- Find symbol-pair boundary using any AM (common portion is enough)
- Distinguish odd and even PCSLs and convert back to checkerboard
- No unique-AM logic required
- No dependence between lanes that are not muxed together
- No PCSL re-ordering logic anywhere in any PMA
- Deskew buffers are not required
- symbol alignment can be considered partial deskew, but is very small
- Overall logic is small compared to DSP or FEC implementation

PAM4 encoding

- All physical instantiations of the PMA service interface use PAM4 encoding.
- The 10 bits of each RS symbol shall be encoded into five PAM4 symbols:
- The first transmitted PAM4 symbol is the result of encoding $\{b 0, b 1\}$
- ...
- The fifth transmitted PAM4 symbol is the result of encoding $\{b 8, b 9\}$
- The encoding of each pair includes Gray mapping, as specified in 120.5.7.1
- 1/1+D Precoding:
- Required on PMA lanes connected to AUIs or electrical PMDs (to prevent significant degradation in 200G/400G where the PCS interleaves only 2 codewords)
- For interfaces to optical PMDs, may depend on presence and characteristics of inner code - for future discussion, not part of this proposal.

Summary

- Bit muxing will cause severe degradation at $200 \mathrm{~Gb} / \mathrm{s}$ per lane
- PMA muxing should maximize temporal separation between symbols of the same codeword on the output lane
- Round-robin (4 codewords) or alternating pattern (2 codewords)
- This would optimize FEC performance
- Symbol-pair muxing (aka half-blind symbol muxing) concept has been presented
- Achieves maximal separation for best FEC performance
- Logic implementation is trivial for co-located PMAs and repeaters, and reasonable for gearbox PMAs
- Method of converting checkerboard to striped symbol pattern and back is still TBD
- In addition to symbol-pair muxing, precoding support is required on PMA lanes connected to AUIs or electrical PMDs.

Backup sections

FEC performance

Backup

Worst case 8:1 muxing: 200G/400G (2 codeword interleaving)

FEC performance with an 8:1 bit-muxing PMA with 4-way interleaved FEC

Source: ran 3df 01a 2211

FEC performance with an 8:1 symbol-muxing PMA

Source: ran 3df 01a 2211

Summary

Compare muxing options for 800G: SNR [dB] and DER for meeting FLR=9.2e-13

Scenario	8-lane AUI/PMD 4:1 bit muxing	4-lane AUI/PMD 8:1 bit muxing	4-lane AUI/PMD 8:1 symbol muxing
Uncorrelated errors		17.7 (reference) $4.3 \mathrm{e}-4$	
Limited DFE, $a=0.375$	$\begin{gathered} 18.05(\Delta=0.35 \mathrm{~dB}) \\ 2.7 \mathrm{e}-4 \end{gathered}$	$\begin{gathered} 18.4(\Delta=0.6 \mathrm{~dB}) \\ 1.6 \mathrm{e}-4 \end{gathered}$	$\begin{gathered} 17.8(\Delta=0.1 \mathrm{~dB}) \\ 3.9 \mathrm{e}-4 \end{gathered}$
Unlimited DFE, $a=0.75$	$\begin{gathered} 18.7(\Delta=1 \mathrm{~dB}) \\ 8.9 \mathrm{e}-5 \end{gathered}$	$\begin{gathered} 19.5(\Delta=1.75 \mathrm{~dB}) \\ 1.9 \mathrm{e}-5 \end{gathered}$	$\begin{gathered} 18.07(\Delta=0.35 \mathrm{~dB}) \\ 2.6 \mathrm{e}-4 \end{gathered}$
Unlimited DFE, $a=0.75$ + precoding	$\begin{gathered} 18.3(\Delta=0.6 \mathrm{~dB}) \\ 1.8 \mathrm{e}-4 \end{gathered}$	$\begin{gathered} 18.5(\Delta=0.75 \mathrm{~dB}) \\ 1.2 \mathrm{e}-4 \end{gathered}$	$\begin{gathered} 18.05(\Delta=0.33 \mathrm{~dB}) \\ 2.6 \mathrm{e}-4 \end{gathered}$
Overall	Acceptable for PMD where precoding can be negotiated AUI and optics assumed not to have $a=0.75$	Not acceptable unless precoding is negotiated	Minimal degradation in all cases Precoding not required*

* Precoding may be needed for 400G and 200G with only 2-way codeword interleaving

Striping the checkerboard

Backup

Detailed description of symbol-pair muxing with symbol swapping (striping method "A")

- In the transmit direction:
- Align to symbol-pair (20-bit) boundary and process a symbol-pair at a time
- Either using information from a co-located PCS, or using AMs
- In odd-numbered PCSLs, swap the two 10-bit symbols in each symbol pair.
- This turns the "checkerboard" into a striped pattern
- The swapping is also applied to the symbols included in AMs of odd PCSLs
- Mux the symbol-pairs from each PCSL into the output lane.
- In 800G, alternate symbol-pairs between flow 0 and flow 1
- In 200G/400G - any order.
- In the receive direction, on each input lane:
- Find at least one AM
- Can be found using just the common part of the AMs
- Due to symbol-pair muxing, each AM appears as six symbol pairs; pairs can be either swapped or in the original order; pairs separated by three other symbol pairs
- Distribute symbol pairs to PCSLs based on the AM alignment
- On each PCSL, find the AM and determine if it has swapped symbol pairs or not
- If an AM in a PCSL has swapped symbol pairs, swap each symbol pair in that PCSL (undo the Tx swapping)
- If the output lanes are connected to a 100G/lane AUI, bitwise-mux groups of 4 PCSLs.
- The examples in the next slides use this striping method.

32:4 (800GBASE-R) symbol-pair-muxing:

Example 1

> Subsequent symbol pairs from a PCSL appear
> every 16 symbols on the output lane

32:4 (800GBASE-R) symbol-pair-muxing:

Example 2

Subsequent symbol pairs from a PCSL appear
 every 16 symbols on the output lane

PMA(8:4) example

(Combining two bit-muxed $800 \mathrm{GAUI}-8$ lanes into one $800 \mathrm{GAUI}-4$ symbol-pair-muxed lane)

Bit patterns on two input lanes (with skew)
 Every cell represents a PAM4 symbol (2 bits)

UI\Lane	0	4
22	b81a81	d122c122
21	d80c80	b122a122
20	b80a80	d121c121
19	c9d9	b121a121
18	a9b9	d120c120
17	c8d8	b120a120
16	a8b8	c49d49
15	c7d7	a49b49
14	a7b7	c48d48
13	c6d6	a48b48
12	a6b6	c47d47
11	c5d5	a47b47
10	a5b5	c46d46
9	c4d4	a46b46
8	a4b4	c45d45
7	c3d3	a45b45
6	a3b3	c44d44
5	c2d2	a44b44
4	a2b2	c43d43
3	c1d1	a43b43
2	a1B1	c42d42
1	c0do	a42b42
0	a0b0	c41d41

Bit patterns on the original 8 PCSLs (deskewed)
Every cell represents one bit

RCSL	0	1	16	17	8	9	24	25
19	b89	a89	d89	c89	b129	a129	d129	c129
18	b88	a88	d88	c88	b128	a128	d128	c128
17	b87	a87	d87	c87	b127	a127	d127	c127
16	b86	a86	d86	c86	b126	a126	d126	c126
15	b85	a85	d85	c85	b125	a125	d125	c125
14	b84	a84	d84	c84	b124	a124	d124	c124
13	3 b83	a83	d83	c83	b123	a123	d123	c123
12	b82	a 82	d82	c82	b122	a122	d122	c122
11	b81	a81	d81	c81	b121	a121	d121	c121
10	b80	a80	d80	c80	b120	a120	d120	c120
	a9	b9	c9	d9	a49	b49	c49	d49
	8 a8	b8	c8	d8	a48	b48	c48	d48
	a7	b7	c7	d7	a47	b47	c47	d47
	6 a6	b6	c6	d6	a46	b46	c46	d46
	5 a5	b5	c5	d5	a45	b45	c45	d45
	a4	b4	c4	d4	a44	b44	c44	d44
	a3	b3	c3	d3	a43	b43	c43	d43
	a2	b2	c2	d2	a42	b42	c42	d42
	a1	b1	c1	d1	a41	b41	c41	d41
	a0	b0	c0	d0	a40	b40	c40	d40

Bit pattern on one 800GAUI-4 lane Every cell represents a PAM4 symbol (2 bits)

8 (A)

PMA(2:1) example

(Combining two bit-muxed 200GAUI-2 lanes into one 200GAUI-1 symbol-pair-muxed lane)

Bit patterns on two input lanes (with skew)
 Every cell represents a PAM4 symbol (2 bits)

400GAUI-4 to 400GAUI-2 conversion is similar

Bit patterns on the original 8 PCSLs (deskewed)
Every cell represents one bit

${ }_{\text {Bit }}$		1	4	5	2	3	6	7
19	9 b49	a49	b69	$a 69$	b59	a59	b79	a79
18	8 b48	a48	b68	a68	b58	a58	b78	a78
17	7 b47	a47	b67	a67	b57	a57	b77	a77
16	6 b46	a46	b66	a66	b56	a56	b76	a76
15	5 b45	a45	b65	a65	b55	a55	b75	a75
14	4 b44	a44	b64	a64	b54	a54	b74	a74
13	3 b43	a43	b63	a63	b53	a53	b73	a73
12	2 b42	a42	b62	a62	b52	a52	b72	a72
11	1 b41	a41	b61	a61	b51	a51	b71	a71
10	0 b40	a40	b60	a60	b50	a50	b70	a 70
	9 a9	b9	a29	b29	a19	b19	a39	b39
	8 a8	b8	a28	b28	a18	b18	a38	b38
	$7 \quad 37$	b7	a27	b27	a17	b17	a37	b37
	6 a6	b6	a26	b26	a16	b16	a36	b36
	5 a5	b5	a25	b25	a15	b15	a35	b35
	4 a4	b4	a24	b24	a14	b14	a34	b34
	3 a3	b3	a23	b23	a13	b13	a33	b33
	2 a2	b2	a22	b22	a12	b12	a32	b32
	$1 . \mathrm{a} 1$	b1	a21	b21	a11	b11	a31	b31
	0 a0	b0	a20	b20	a10	b10	a30	b30

Bit pattern on one 800GAUI-4 lane Every cell represents a PAM4 symbol (2 bits)

Detailed description of symbol-pair muxing with symbol delaying (striping method "B")

- In the transmit direction:
- Align to symbol-pair (20-bit) boundary
- Either using information from a co-located PCS, or using AMs
- In odd-numbered PCSLs, delay the symbol sequence by one symbol, such that the symbols are paired in the same order as in even-numbered PCSLs
- This turns the "checkerboard" into a striped pattern
- The shifted pairing is also applied to the symbols included in AMs of odd PCSLs
- Mux the symbol-pairs from each PCSL into the output lane.
- In 800G, alternate symbol-pairs between flow 0 and flow 1
- In 200G/400G - any order.
- In the receive direction, on each input lane:
- Find at least one AM
- Can be found using just the common part of the AMs
- Due to symbol-pair muxing, each AM appears as six symbol pairs on even PCSLs, and as five symbol-pairs and two separate symbol on odd PCSLs; pairs separated by three other symbol pairs
- Distribute symbol pairs to PCSLs based on the AM alignment
- If the output lanes are connected to a 100G/lane AUI, bitwise-mux groups of 4 PCSLs.

Previously considered methods

Backup

Options considered in internal discussions for converting from bit to symbol muxing

Bit mux \rightarrow symbol mux direction

- "Full": Bitwise de-mux; AM lock and fully align all input PCSLs; re-mux with specific lane constraints (for example, ran 3df 02a 2211)
- Requires alignment between all lanes and large deskew buffers
- "Blind": Bitwise de-mux; on each pair of input lanes, AM lock and align PCSLs to 1-symbol boundary; re-mux with no constraints
- Allows per-lane implementation, minimum deskew buffers; but muxed symbol order is not optimal
- "Half-blind"*: Bitwise de-mux; on each pair of input lanes, AM lock and align PCSLs to 2-symbol boundary; re-mux with constraint to create a repeating codeword order (e.g., ABCDABCD)
- Allows per-lane implementation, slightly larger buffers; muxed symbol order is optimal
- "10-bit muxing": Bitwise de-mux; mux 10-bit symbols with any alignment
- Simplest "bit \rightarrow symbol" direction, but "symbol \rightarrow bit" direction is challenging (must recover symbol boundaries and align in order to be PCS-compatible)
- "Hybrid": 4:1 symbol-mux and then 2:1 bit-mux
- Not compatible with existing $100 \mathrm{~Gb} / \mathrm{s}$ per lane AUls that use 4:1 bit-mux

[^0]
Comparison of muxing options considered

Module Muxing Scheme		Performance	Complexity	TX module AM Lock	RX module AM lock	Deskew?	Breakout Friendly? No?
$\begin{aligned} & \text { Symbol } \\ & \text { Mux } \\ & \text { (800 GbE and } \\ & 1.6 \mathrm{TbE}) \end{aligned}$	Specific/Optimal symbol mux (Fully aligned codewords)	High	High	Full AM	Full AM	Full deskew of AUI lanes	
	Half-blind symbol mux (Aligned to 2x RS-symbol boundary)	High	Medium	Full AM	Common part of AM	20-b deskew	Yes
	Blind symbol mux (Aligned to 1x RS-symbol boundary)	Medium	Low	Common part of AM	Common part of AM	10-b deskew	Yes
	Blind 10-bit/40-bit mux (Un-aligned, arbitrary position)	Medium	Lower	None	Common part of AM	No	Yes
Hybrid (800 GbE only	4:1 symbol mux $+2: 1$ bit mux (802.3df Mux changed)	Low	Lower	None	None	No	Yes
Bit Mux	2:1 bit mux (1.6TbE assuming 16x100G PCS lanes)	Low	Lower	None	None	No	Yes
(800 GbE and 1.6 TbE)	8:1 bit mux (Same as in 802.3df)	Lowest	Lowest	None	None	No	Yes

PMA partitioning examples

Backup

Sublayer stacks for 800GBASE-R with concatenated FEC

New Host ASIC

Legacy Host ASIC

New Host ASIC +
Legacy Module Interface?

Sublayer stacks for 800GBASE-R with segmented FEC

New Host ASIC

Legacy Host ASIC

New Host ASIC + Legacy Module Interface?

Sublayer stacks for 800GBASE-R with end-to-end FEC

New Host ASIC
Legacy Host ASIC

New Host ASIC + Legacy Module Interface?

Sublayer stacks for 800GBASE-R with end-to-end FEC and 100G/lane optics

New Host ASIC
Legacy Host ASIC
New Host ASIC +
Legacy Module Interface?

New Clause and Annex structure

Backup

New Clause and Annex structure

- Clause 1XX: Physical Medium Attachment (PMA) sublayers for 200 Gb/s per lane signaling
- 1XX. 1 Overview - as in 173
- 1XX. 2 PMA service interface - as in 173
- 1XX. 3 Service interface below the PMA - as in 173
- 1XX. 4 Functions within the PMA
- Subclauses for New content - symbol-pair muxing, AM lock, checkerboard to striped, diagrams... - per baseline proposal
- 1XX. 5 PMA MDIO function mapping
- 1XX. 6 PICS
- Annex 1XXa: PMA partitioning examples - per baseline proposal

[^0]: * The term "half blind" was used in several offline discussions. It is essentially identical to the "symbol pair muxing" concept in this presentation.

