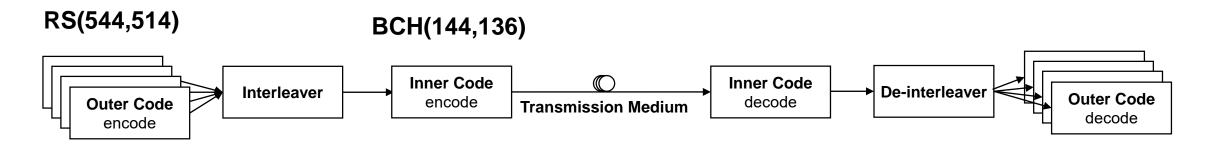

Observation of Inner Code for 200 Gb/s per Lambda IM-DD Optical PMD

Xinyuan Wang, Xiang He, Matt Brown Huawei Technologies


Background: Adopted Logic Architecture Baseline

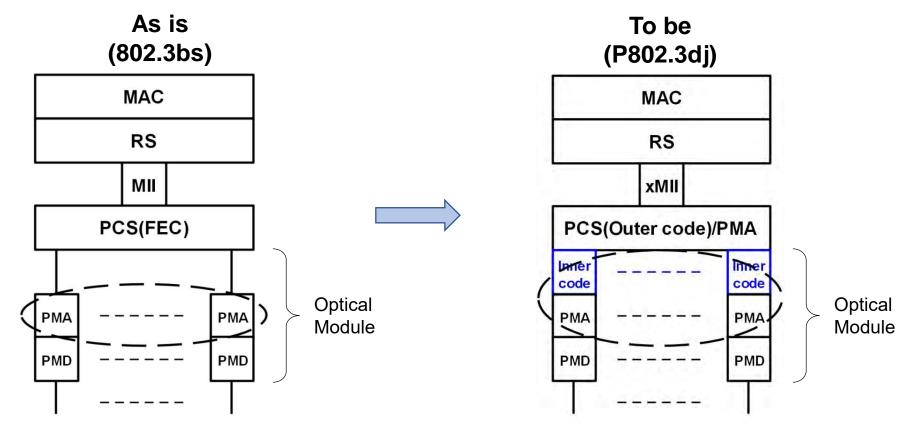
- □ Logic architecture baseline and FEC scheme for 200 Gb/s per lane were adopted.
- Concatenated code based on RS(544,514) as the outer code, soft decision BCH/Hamming as the inner code is under discussion.
 - > Coordinated PCS and PMA design is needed.

Concatenated Scheme for 200 Gb/s per Lambda

□ Key aspects of inner code to be considered for PCS/PMA solution in P802.3dj:

- > #1: Inner code rate, performance, latency, power, as in <u>bliss_3df_01b_2211</u>, <u>he_b400g_01_210426</u>.
- > #2: Breakout support is preferred.
- #3: Protocol agnostic optical module?
- > #4: Interleaver depth between outer and inner code, as in <u>bliss_3df_01a_220517</u>.
- > #4: Channel interleaver for optical PMDs, as in <u>bliss_3df_01a_220517</u>.
- > #5: FEC frame synchronization.

Revisit: Breakout Support as in 802.3bs

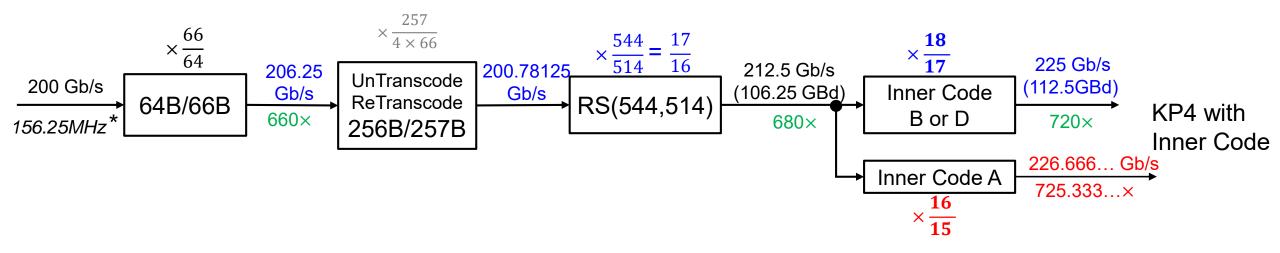

□ In <u>dambrosia_400_01a_1113</u>, support of breakout is suggested.

Conclusions

- The market is adopting this "breakout functionality" with 10GbE / 40GbE
 - Breakout functionality the ability to use a port in a lower rate / higher density mode of operation
- Providing an upgrade path forward could further improve this scenario for lower speeds
- "Breakout functionality" will enhance broad market potential of 400GbE by enabling adoption to support higher density / lower rate lower speeds to enable lower 400GbE cost.
- Proposed objective-
 - Provide appropriate support for breakout functionality

Revisit: Logic Architecture to Support Breakout

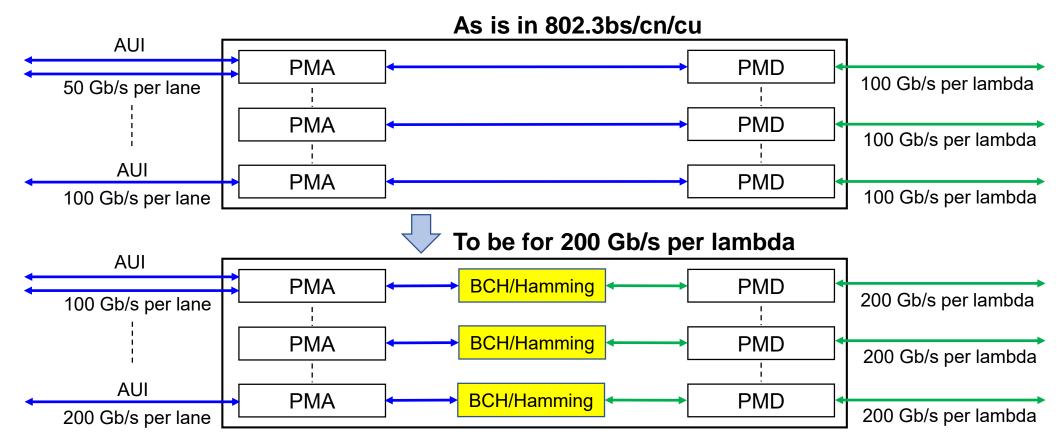
- Even breakout is not an objective in 802.3bs for 200/400GbE, it was **ENABLED** by the PCS(FEC)/PMA architecture as multi-instance sub-PMA function blocks, e.g., 8:4 implemented as 4 × 2:1 in oDSP.
 - **Bonded**: all PMD lanes running together to support a single MAC/PHY at a higher rate, e.g. 1×400 GbE.
 - **Isolated**: breakout mode, single or multi lanes of PMA/PMD carries a single flow of lower rate MAC/PHY, e.g. 4×100 GbE.



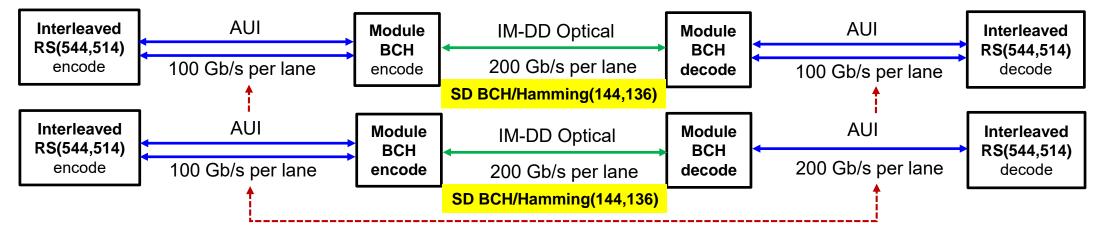
Revisit: PMA Muxing for Protocol Agnostic Optical Module

- During 802.3ba development, protocol agnostic optical module was enabled by MLD and bit muxing, with the following benefits:
 - Optical modules work at "Layer 0" without awareness of complex data pattern (protocol) carried on each AUI and PMD lane, simplifying validation and test during manufacture to lower cost.
 - Friendly to be reused in OTN etc, sharing the overall Ethernet eco-system to lower cost with broader applications.
- □ In 802.3bs, RS(544,514) was adopted for all of PMDs as the first step.
 - Bit muxing was adopted for the PMA to enable protocol agnostic modules, with the support of any logical lane to any physical lane.
 - > The FEC performance degradation due to bit muxing was compensated by 2-way codeword interleaving.
- □ Is it still feasible to support protocol agnostic optical modules in P802.3dj?
 - > More investigation is needed.
 - > Module should less aware protocol, as simple as possible.

#1: Inner Code: BCH/Hamming(144,136)


- □ Inner code rate 17/18 to enable integer PLL.
 - ▶ Keeps the simple historic Xtal references, **clear** rate number at 720×156.25M = 112.5 GBd.
 - > No dummy/padding bits, the corresponding gearbox lead additional latency/power/cost.
 - > **Avoids** further line bit rate increases and their associated losses and costs.

- Hamming(128,120) results fractional PLL.
- 1% higher overhead of Hamming(128,120) w/ padding will cause performance degradation due to limited bandwidth, brings a negative impact on overall coding gain, as in <u>he_3dj_01_230206</u>.


#2: Breakout with Inner Code Working at Per Lambda

- Each 200 Gb/s per lambda related PMA/PMD in optical module has its own inner code encoder, decoder, interleaver, etc. (That is, PMD per lambda dependent only, not PHY dependent.)
 - > PMA/PMD based inner code naturally supports **BREAKOUT** as no data interaction/redistribution between lanes.
 - > PCS lane based inner code relies on PCS lane rate, which requires lane reorder and is PHY dependent.

*For illustration purpose only. Interleaver is omitted in the diagram. 8/13

#3: PMA Muxing Options and Protocol Agnostic Modules

 2:1 muxing (Tx module) and 1:2 demuxing (Rx module) are required during the transition period when 100 Gb/s per lane AUI and 200 Gb/s per lambda PMD are interoperating.

Module Muxing Scheme		Performance	Complexity	TX module AM Lock	RX module AM lock	Deskew?	Breakout Friendly?	
Symbol Mux (800 GbE and 1.6 TbE)	Specific/Optimal symbol mux (Fully aligned codewords)	Highest	Highest	CM+UM	CM+UM	Full deskew of AUI lanes	No?	
	Half-blind symbol mux (Aligned to 4x RS-symbol boundary)	Highest	Higher	CM+UM	CM+UM	40-b deskew	Yes	~
	Blind symbol mux (Aligned to 1x RS-symbol boundary)	High	High	CM only	CM only	10-b deskew	Yes	
	Blind 10-bit/40-bit mux (Un-aligned, arbitrary position)	High	Lower	None	CM only	No	Yes	
Hybrid (800 GbE only)	4:1 symbol mux + 2:1 bit mux (802.3df Mux changed)	Low	Lower	None	None	No	Yes	
Bit Mux (800 GbE and 1.6 TbE)	2:1 bit mux (1.6TbE assuming 16x100G PCS lanes)	Low	Lower	None	None	No	Yes	\checkmark
	8:1 bit mux (Same as in 802.3df)	Lowest	Lowest	None	None	No	Yes	9
	Symbol Mux (800 GbE and 1.6 TbE) Hybrid (800 GbE only) Bit Mux (800 GbE and	Symbol Mux (800 GbE and 1.6 TbE)Specific/Optimal symbol mux (Fully aligned codewords)Blind symbol mux (Aligned to 4x RS-symbol boundary)Blind symbol mux (Aligned to 1x RS-symbol boundary)Blind 10-bit/40-bit mux (Un-aligned, arbitrary position)Hybrid (800 GbE only)Bit Mux (800 GbE and 1.6 TbE)Bit Mux (800 GbE and 1.6 TbE)Bit Mux (800 GbE and 1.6 TbE)Bit Mux (801 GbE and 1.6 TbE)Bit Mux (801 GbE and 1.6 TbE)Bit Mux (801 GbE and 1.6 TbE)Bit Mux (81 Dit mux (1.6 TbE assuming 16x100G PCS lanes) 8:1 bit mux	Specific/Optimal symbol mux (Fully aligned codewords)HighestSymbol Mux (800 GbE and 1.6 TbE)Half-blind symbol mux (Aligned to 4x RS-symbol boundary)HighestBlind symbol mux (Aligned to 1x RS-symbol boundary)HighBlind 10-bit/40-bit mux (Un-aligned, arbitrary position)HighHybrid (800 GbE only)4:1 symbol mux + 2:1 bit mux (802.3df Mux changed)LowBit Mux (1.6 TbE)2:1 bit mux (1.6 TbE assuming 16x100G PCS lanes)Low	Symbol Mux (800 GbE and 1.6 TbE)Specific/Optimal symbol mux (Fully aligned codewords)HighestHighestBlind symbol mux (Aligned to 4x RS-symbol boundary)HighestHigherBlind symbol mux (Aligned to 1x RS-symbol boundary)HighHighBlind 10-bit/40-bit mux (Un-aligned, arbitrary position)HighLowerHybrid (800 GbE and (B02.3df Mux changed)2:1 bit mux (1.6 TbE assuming 16x100G PCS lanes)LowLower	Wodule Muxing SchemePerformanceComplexityAM LockAM LockSymbol Mux (800 GbE and 1.6 TbE)Specific/Optimal symbol mux (Fully aligned codewords)HighestHighestCM+UMBlind symbol mux (Aligned to 4x RS-symbol boundary)HighestHigherCM+UMBlind symbol mux (Aligned to 1x RS-symbol boundary)HighHighCM onlyBlind 10-bit/40-bit mux (Un-aligned, arbitrary position)HighLowerNoneHybrid (800 GbE and (B0 GbE and 1.6 TbE)2:1 bit mux (1.6 TbE assuming 16x100G PCS lanes)LowLowertNone	Woodule Muxing SchemePerformanceComplexityAM LockAM lockSymbol Mux (B00 GbE and 1.6 TbE)Specific/Optimal symbol mux (Fully aligned codewords)HighestHighestCM+UMCM+UMBlind symbol mux (Aligned to 4x RS-symbol boundary)HighestHigherCM+UMCM+UMBlind symbol mux (Aligned to 1x RS-symbol boundary)HighHighCM onlyCM onlyBlind 10-bit/40-bit mux (Un-aligned, arbitrary position)HighLowerNoneCM onlyHybrid (800 GbE only)4:1 symbol mux + 2:1 bit mux (802.3df Mux changed)LowLowerNoneNoneBit Mux (800 GbE and 1.6 TbE)2:1 bit mux (1.6 TbE assuming 16x100G PCS lanes)LowLowertNoneNone	Wodule Muxing SchemePerformanceComplexityAM LockAM lockDeskew?Specific/Optimal symbol mux (Fully aligned codewords)HighestHighestCM+UMCM+UMFull deskew of AUI lanesMux (800 GbE and 1.6 TbE)Half-blind symbol mux (Aligned to 4x RS-symbol boundary)HighestHigherCM+UMCM+UM40-b deskewBlind symbol mux (Aligned to 1x RS-symbol boundary)HighHighCM onlyCM only10-b deskewBlind symbol mux (Aligned to 1x RS-symbol boundary)HighLowerNoneCM onlyNoHybrid (800 GbE and (800 GbE only)4:1 symbol mux + 2:1 bit mux (Un-aligned, arbitrary position)LowLowerNoneNoneNoHybrid (800 GbE and (800 GbE and)2:1 bit mux (1.6 TbE assuming 16x100G PCS lanes)LowLowertNoneNoneNoBit Mux (800 GbE and (1.6 TbE assuming 16x100G PCS lanes)LowLowestNoneNoneNo	Wodule Muxing SchemePerformanceComplexityAM LockAM lockDeskew?Friendly?SymbolSpecific/Optimal symbol mux (Fully aligned codewords)HighestHighestCM+UMCM+UMFull deskew of AUI lanesNo?SymbolHalf-blind symbol mux (Aligned to 4x RS-symbol boundary)HighestHigherCM+UMCM+UM40-b deskewYesBlind symbol mux (Aligned to 1x RS-symbol boundary)HighHighCM onlyCM only10-b deskewYesBlind 10-bit/40-bit mux (Un-aligned, arbitrary position)HighLowerNoneCM onlyNoYesHybrid (800 GbE and (800 GbE and)4:1 symbol mux + 2:1 bit mux (B02.3df Mux changed)LowLowerNoneNoneNoYesBit Mux (800 GbE and (800 GbE and)2:1 bit mux (1.6TbE assuming 16x100G PCS lanes)LowLowertNoneNoneNoYesBit Mux (800 GbE and 1.6 TbE8:1 bit muxLowestLowestNoneNoneNoYes

#4: Interleaver Design Between Inner and Outer Codes

- □ The effect of interleavers has been covered in <u>bliss_3df_01a_220517</u>.
 - Convolutional interleaver can deal with the "bursty" errors from inner code decoders and improve overall coding gain.
 - > Channel interleaver on inner code codewords was also discussed to mitigate burst errors from PMD.
- Interleaver design should support multiple Ethernet rates and muxing options.
 - All Ethernet rates that could use 200G/lane PMD should be considered: 200 GbE, 400 GbE, 800 GbE and 1.6 TbE.
 - > With symbol-muxed AUI lanes, interleaver design for BCH/Hammming(144,136) could be simplified.
- Tradeoff needs to be made between implementation cost/latency/power and performance required based on the actual pre-FEC BER threshold for 200 Gb/s per lambda optical PMDs.
 - For latency sensitive applications, interleavers with 50~100 ns extra latency penalty (more than RS(544,514) decoding latency) may not be practical.
- □ One possible approach is to allow bypass of the interleaver(s) for latency sensitive applications.
 - Inner code itself only adds about 2~10ns on top of the RS(544,514) FEC, as shown in <u>he_b400g_01_210426</u>.

#5: Inner Code Delimiting: Blind FEC Frame Synchronization

- Option C, aka self-synchronization of inner code, can be achieved by testing a number of target codewords obtained by a sliding window of multiple n-bits, for example n=144 for BCH/Hamming(144,136).
 - **Protocol agnostic:** work with any inner code, independent to logic layer architecture, interleaving mechanism etc.
 - > **Does not** require alignment of PCS lanes from AUIs which requires additional logic and buffer inside module.
 - > **Does not** need additional alignment markers which requires more logic, low MTTLL and low reliability.

Option A: Fully re-use outer code AM patterns, mapping, insertion and removal mechanism. It will require the inner codeword length to be proportional to the outer codeword length. Bit-transparent optical module and breakout will not be supported.

Option B: Additional new AM for inner code, lead to additional overhead for PLL ratio from 18/17 or 19/17.

Option C: Blind FEC frame synchronization, similar as Clause 74.7.4.7: FEC block synchronization. It is simpler and requires no special architecture, better in all ways. Preferred.

Conclusions:

- Proposal to adopt BCH/Hamming (144,136) based inner code for P802.3dj
 "200 Gb/s per lambda" optical PMDs.
 - > The code simplifies optical modules design, resulting lower latency, power and cost.
 - > Breakout is naturally supported when encoding/decoding is performed per lambda.
- Per-PMD lane approach for inner code and self-synchronization can apply to both inner code proposals in P802.3dj, which will simplify implementations and logic discussions.

Thanks!