Concatenated FEC Codes for 800GE and 1.6TE

Zhongfeng Wang
Nanjing Univ.

Chuan Zhang
Southeast Univ.

IEEE802.3dj (Online), Feb. 2023
Outline

- KR FEC for 100GE
- KP FEC for 400GE
- Concatenated FEC Codes for Hi-Speed Networking
- KP FEC Based Concatenated Codes for Ethernet
- Simple Analysis about Candidate FEC Codes
- Conclusion
KR- FEC Code for 100GE

- KR-FEC
 - Transcoding: $4 \times 64b/66b \Rightarrow 256/257$bit coding ($264 \Rightarrow 257$)
 - FEC: RS(528, 514, $t = 7$), processing latency < 100ns
 - First proposed in IEEE 802.3bj meeting in Nov. 2011*

- Good Properties
 - Net OH: 0% ($257/264 \times 528/514 = 1$)
 - No dummy or padding bits, good for coding gain and hardware cost
 - Good parallelism options: $5280/33 = 2 \times 80$bits = 160bits
 - 644.53125M*160 = 103.125G, 625M*160 = 100G, 625M = 4*156.25
 - For 4 physical lanes, can distribute/receive 4 RS symbols to/from each lane each clock cycle
 - Can finish encoding or decoding of one FEC block within an integer number of cycles

KP- FEC Code for 200/400GE

KP-FEC
- RS(544, 514, t = 15), processing latency ~ 100ns
- 100GBASE-KP4, 400GE, 200GE, and 50GE
- First proposed at IEEE 802.3bj meeting in May 2012*

Good Properties
- No dummy or padding bits, good for coding gain and hardware cost
- Parallelism options: 160/320, can use same bus-width as KR-FEC:
 \[\frac{5440}{34} = 160 \text{bits} \]
- Net OH (ensure integer PLL, \(680 \times 156.25M = 106.25G\))
 \[\frac{68}{66 - 1} \sim = 3\% \]

* M. Brown and Z. Wang, “100G Backplane PAM4 PHY FEC/PMA Encoding Enhancements”, Minneapolis, May 2012
FEC Consensus in 802.3bj 100G PAM4 PHY

- **Proposal of RS(544,514) to Replace RS(444,412)**
 - Transcoded PCS data fits exactly into payload.
 - No gearboxing for dummy bits.
 - More efficient use of parity.
 - Permits reference clock factor reductions from 88 to 87

- **Broad consensus and adopted in IEEE 802.3bj meeting in May 2012**

M. Brown and Z. Wang, “100G Backplane PAM4 PHY FEC/PMA Encoding Enhancements”, Minneapolis, May 2012
● Applications:
 □ Boost coding gain of existing networking systems
 ◆ Proposed (*) the framework to adjust overall coding gain via code concatenation at ITU Q11/15 meeting in March 2014
 □ Obtain an optimal tradeoff between coding gain, power and hardware complexity
 ◆ KP-FEC concatenated with SPC/Hamming/BCH code can achieve a NCG of more than 8.5 dB

Candidate FEC Code (1)

- KP-FEC $\times N + HM(144,136) \times M$
 - No dummy bits, integer PLL
 - Code rate: $1/(68/66 \times 18/17) = 66/72 = 11/12$
 - OH: $72/66 - 1 = 9.09\%$

- Parallel Processing Considerations
 - $4 \times 5440 = 136*160 = 272 \times 80$, assume $4 \times$ interleaved KP-FEC as outer code
 - 200G data rate: clk < 1.0GHz, EI-Par = 136*2, EO-Par = Tx-Par = Rx-Par = 144*2,
 - 400G data rate: double 200G parallelism
 - 800G data rate: double 400G parallelism
 - 1.6T data rate: double 800G parallelism

* EI-Par: encoder input side parallelism, EO-Par: encoder output side parallelism, Tx-Par: data out parallelism
Good Properties:

- Easy parallel processing for both Tx and Rx
- Simple control logic (integer cycles to process a composite FEC block)
- No gearbox is needed (no data rotation/wrap up, et al)
- No additional latency by gearbox translation
- Very simple clocking
Candidate FEC Code (2)

- KP-FEC \times N + HM(128,120) \times L + \text{Padding bits} \times D
 - 69632 (= 128 \times 544) + 64 \text{ bits (padding)}
 - Code rate: \(1/[68/66\times128/120 \times(69632+64)/69632] = 660/726\)
 - OH: \(726/660 - 1 = 10.0\%\)

- Parallel Processing Considerations:
 - 69632 + 64 = 128 \times 544 + 64
 - 200G data rate: \((69632+64) = 363\times3\times64\), \(\text{RxPar} = 192/242/288\)
 - 200G data rate: encoder input side, 120 \times 544 = 240 \times 272; \(\text{EI-Par} = 240\)
 encoder output side, \(\text{EO-Par} = 256\) (using same clock)
 \(\text{TxPar} = 192/242/288\); need gearbox, costing at least 1 extra cycle at each direction.
 - 400G/800G/1.6T data rate: can simply 2x/4x/8x parallelism of 200G case
 - If we don’t want gearbox between encoder output and Tx, we can consider \(\text{EO-Par} = \text{EI-Par} = \text{TxPar}\).
 Encoder circuitry (including \(\text{Fclk}\)) will be more complicated since each coder gets irregular stream.
 - 69632*2 + 128 = 128\times544\times2 + 128
 - Similar parallel processing options to above can be considered

- Good Properties:
 - Dummy bits can be used for data synchronization. However, it is not trivial to design a data synchronization scheme because padding bits have around 0.4\% of error rate.
Candidate FEC Code (2) Function Illustration

12 × 5440b

KP

KP

KP

272 × (2*120b)

120

120

120

120

120

120

HM Encode

HM Encode

272 × (2*128b)

Gearbox

256 to 192/242/288

& Add pads

Tx

Rx

Gearbox

192/242/288

to 256

& Remove pads

f1=200G*68/64/240

f2=f1

128b HM

288b

Non-padded data stream

place to insert pad every 69632 bits

128b HM

irregular stream required gearbox

residue data

64bit pad

residue data in every cycle

f3=200G*726/640/Tx-Par

128b HM

256 to

192/242/288

& Add pads

Tx-Par

192/242/288b

Rx-Par

192/242/288b
Summary about Two Candidate Codes

<table>
<thead>
<tr>
<th>Inner code</th>
<th>NCG</th>
<th>Overclocking</th>
<th>Codec complexity</th>
<th>Design & verification</th>
<th>Total Rx power increase</th>
<th>Gearbox Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>(144,136)</td>
<td>very close</td>
<td>9.09%</td>
<td>Lower</td>
<td>Easier</td>
<td>0% (ref. design)</td>
<td>None</td>
</tr>
<tr>
<td>(128,120)</td>
<td>very close</td>
<td>10.0%</td>
<td>Higher</td>
<td>Complex</td>
<td>15~20% x power of (ref-codec)</td>
<td>+ 2 cycles Tx+Rx at least</td>
</tr>
</tbody>
</table>

- In principle, we can also add dummy bits periodically for the first coding scheme, e.g.,
 - for every 103680 (=720*144) bits, add 144bits, 1/code rate = 721/660 < 726/660
 - for every 103680 (=144*720) bits, add 288bits, 1/code rate = 722/660 < 726/660
- Added dummy bits can be used for data alignment. But it is non-trivial to use them to convey control bits due to considerable raw error rate of them.
- Considering the pros and cons, neither of the schemes that add dummy bits is promising.
Final Remarks

- KR FEC and KP FEC were chosen for 100GE and 400GE respectively, but for some common reasons:
 - No dummy bits are involved and can ensure integer PLL
 - Easy for parallel processing
 - Low-complexity implementation, facilitating low latency and low power design

- Existing two candidate inner codes have almost the same performance (NCG). Thus easy implementation/low cost/low power/low latency should be deeply considered.

- We should work together to make our industry “Wear shorts to race 100 meters”
Thanks for Your Attention!

Email: zfwang at NJU.edu.cn