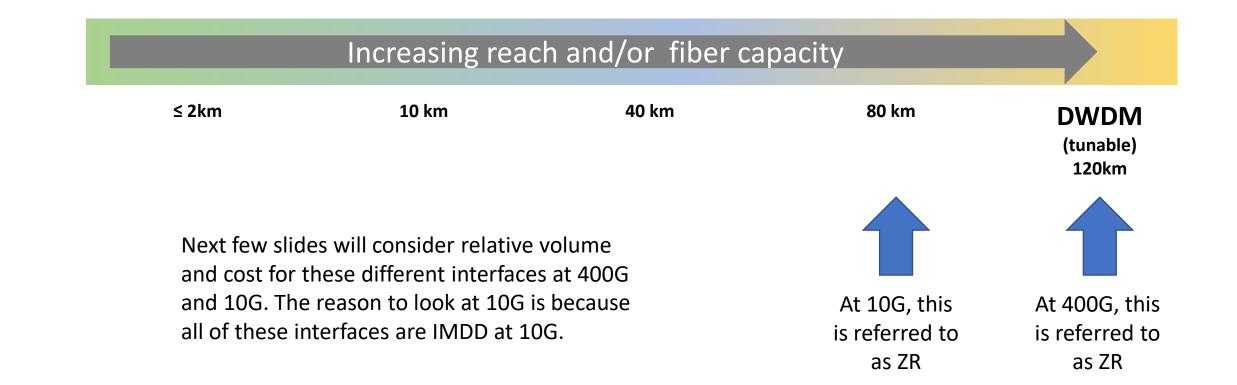
Alignment of 800GBASE-LR1 and 800GBASE-ER1 with OIF800ZR Implementations

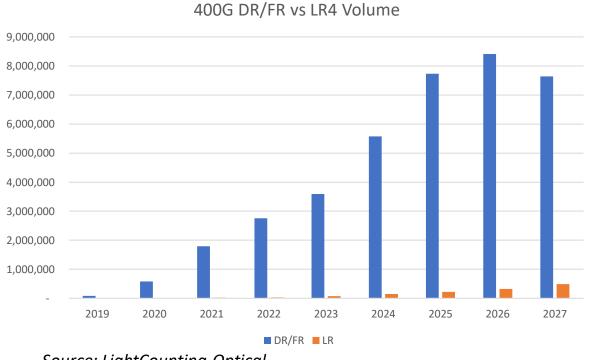
A baseline proposal

Tom Williams - Cisco Gary Nicholl - Cisco Weiqiang Cheng - China Mobile

Supporters

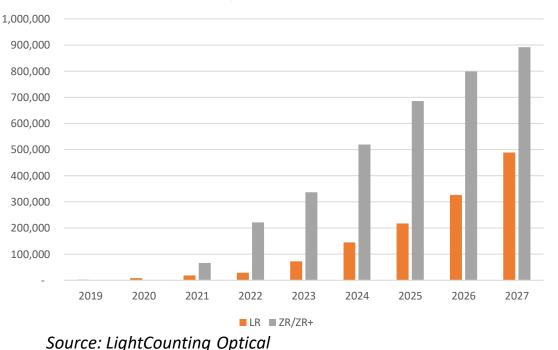

- Haojie Wang, China Mobile
- Mike Sluyski, Cisco
- Aihua Liu, ZTE
- Chengbin Wu, ZTE
- Huijun Sha, Viavi
- Xue Wang, H3C
- Atul Srivastava, NEL
- Vasu Parthasarathy, Broadcom
- Kumi Omori, NEC
- Marc Stiller, Lumentum

- Guangpeng Ma, Lumentum
- Ernest Muhigana, Lumentum
- Yanjun Zhu, Hisense
- Zhan Su, Ruijie Networks
- Yu Zhu, Hengtong Group
- ChiYuan Chen, Spirent
- Brian Welch, Cisco*
- Jeff Maki, Juniper Networks*
- Frank Chang, Source Photonics*


Topics

- 800G LR & ER
 - Market Considerations
 - Technical Approaches
 - Baseline Proposal

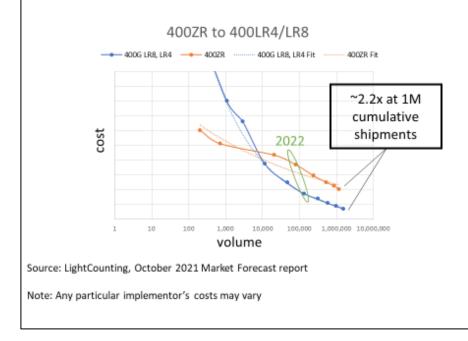
Cost is driven by reach, fiber capacity and volume



400G Volume Comparison

Source: LightCounting Optical Components Market Forecast, Oct 2022.

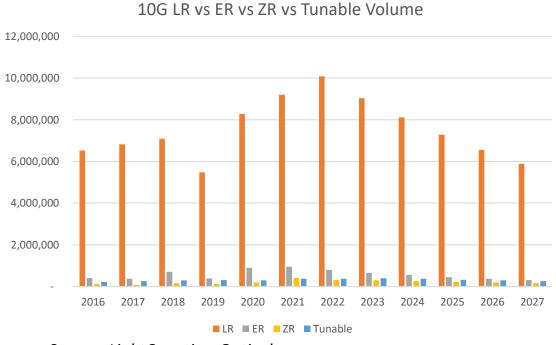
DR/FR volumes much higher than LR


400G ZR/ZR+ vs LR4 Volume

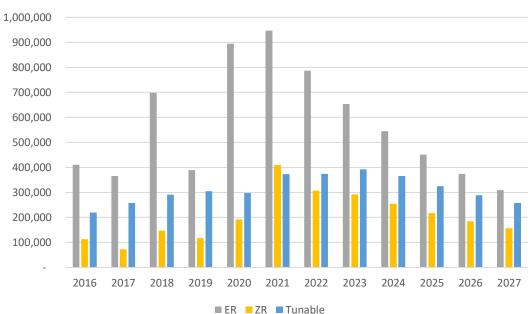
ZR/ZR+ volumes > 2x compared to LR

Components Market Forecast, Oct 2022.

400G Relative Cost Comparison


Using 400G coherent vs IMDD cost comparison to gain insights into 800G

- Looking at LightCounting's report on 400G module data
- Complexity drives initial cost and manufacturing improvements and volume drive the reduction over time
- At 400G, a 100km DWDM 400ZR module is projected to only have a 2.2x cost difference at comparable volumes with 400G 10km IMDD
- Predicting what an 800G equivalent curve would look like:
 - · Coherent complexity reduces
 - · IMDD complexity increases
 - · Volume of IMDD less leverage from 2km
 - Coherent volume increases (if adopted by 802.3df) with leverage from 40km


williams_3df_01a_220329

Relative Volumes at 10G

Source: LightCounting Optical Components Market Forecast, Oct 2022.

No DR/FR, so LR volumes dominate

10G ER vs ZR vs Tunable Volume

Source: LightCounting Optical Components Market Forecast, Oct 2022.

Tunable volume comparable to ZR

Relative Cost of Tunability

Example 10G Tunable vs 10G ZR

Note: Any particular implemetor's costs may vary Source: LightCounting Optical Components Market Forecast, Oct 2022.

- Tunable DWDM drives a higher relative cost
- Comparable volumes, but tunable is 2-3x higher relative cost than ZR
 - Higher relative cost laser technology
 - Higher relative cost test stations
 - Longer test times
 - Lower yields

DWDM requirements drive higher relative cost whether based on IMDD or coherent 8

Summary of LR market assumptions

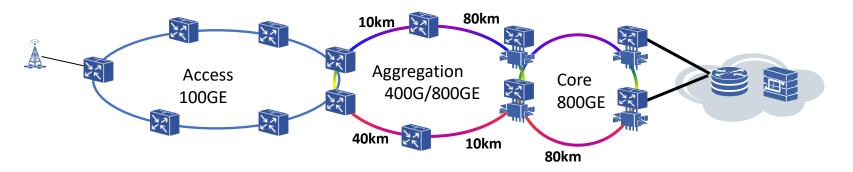
- With industry standardization of DR/FR solutions, the LR market is much smaller than earlier (i.e. 10G or 100G) generations
 - Order of magnitude lower than DR/FR and half the ZR/ZR+ volume at 400G
- The higher relative cost for tunable DWDM exists whether using IMDD or coherent technology
 - Tunable lasers are not required for coherent LR or ER interfaces in the scope of 802.3df
- The low volume for LR interfaces makes alignment with other industry investments critical
 - Alignment with DR/FR does offer the potential for lower relative cost, as observed at 400G
 - Important to avoid decisions that could burden the DR/FR implementations
 - More detail needed on the technical alignment of IMDD LR with DR/FR, particularly related to DSP development
 - Alignment with ZR/ZR+ offers the potential for a high-yielding implementation with minimal extra development
 - As ZR/ZR+ volumes have increased, this approach achieves some of the same benefits of scale

Possible 800GBASE-LRx Approaches

- IMDD with concatenated FEC KP4+Hamming(128,120)
 - See rodes_3df_01a_2211.pdf
 - Robust interconnect based on high-yielding manufacturing specs?
- Coherent using segmented oFEC-based FEC as in 800ZR DSPs
 - Highly leverages industry investment using a common, interoperable implementation for LR, ER and ZR
 - Higher coding gain for extra link margin and/or better manufacturing yield
 - Alternatively, coding gain can be reduced for improved power and latency
 - Alignment of the development will result in a broader component supply chain
- OIF 800LR KP4+BCH(126,110)
 - Lower latency for applications inside the data center with 100G AUI
 - Doesn't leverage development of higher volume interfaces
 - Different baud rate, framing and timing architecture
 - O-band is adopted in OIF and not well-suited for 40km

We believe that an oFEC based standard will result in a high-yield solution with a broader supply base

Alignment Requirement of 10/40/80km

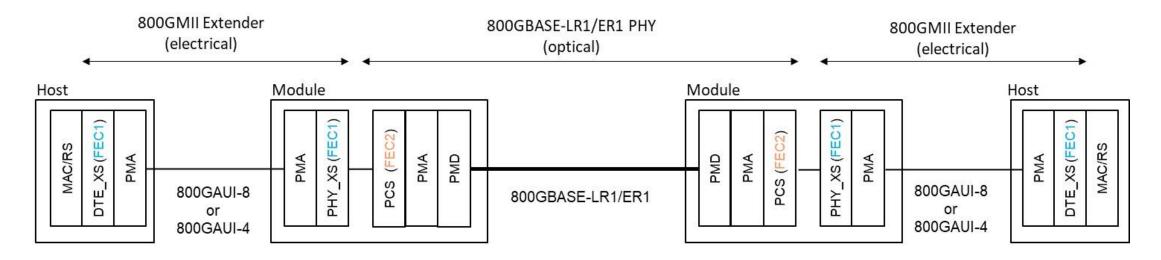

Keeping technical consistency in 10/40/80km is quite necessary in view of telecom operators

• As 5G and metro applications extend quickly, IP network urgently requires 800GE. For one example, in a Fixed broadband access network, 30000 subscribers now share one BRAS. The average access rate is more than 270Mbps and the uplink speeds are already reaching 800Gb/s in aggregate.

• Currently, telecom operators deploy 100GE in metro network, where **the link distributions** are shown in the table below. **800GE interfaces** is expected to be used in the same link scenario, which is extremely likely to result in the same usage statistics 100GE

Transmission Distance	<2km	10km	40km	80km
10GE distribution	0.28%	44.46%	44.05%	11.20%
100GE distribution	0	56.43%	34.59%	8.97%

• As mentioned above, 800GE at metro may be randomly deployed in different distance, such as 10km, 40km and 80km. Thus, **the interoperation is required and the technical compatibility between them** will bring a significant advantage in supply and spare parts.


oFEC introduction and overview

- oFEC was standardized at 400G for ZR+ applications
 - Interoperability validated across multiple DSPs available today
 - oFEC is used in interoperable interfaces defined by Open ROADM, CableLabs, OpenZR+ and ITU
 - OIF has selected oFEC for 800ZR
 - Higher performance expanded the addressable market for ZR+ solutions
 - 11.6dB NCG (16QAM)
- Based on an iterative decoder
 - Existing oFEC standards assume 3 soft decision iterations
 - Implementations with fewer implementations can reduce power and latency by sacrificing some coding gain
 - The same encoder is used in both cases, so development effort and interoperability between implementations can be maintained

What about latency?

- 2-10 km of SMF fiber contributes ~10-50 μ s of latency to the link
- Traditionally, some LR use cases have been based on additional loss elements in the link
 - Patch panels, optical switches, etc.
 - Fiber impairments (CD, PMD, etc.) for these applications may be less than 10km of SMF
 - Lower latency in these applications is beneficial, but robust operation and a broad supply base is primary consideration to users
- At 800G, new use cases are driving requirements for sub-1us latency
 - Is LR the right place to address these applications?
 - Will these applications drive substantially more LR volume?
 - If volume is smaller than LR, we need to be careful not to drive a costly solution
 - If volume is much larger than LR, we should optimize for this use case
 - No data has been provided on market potential

800GBASE-LR1/ER1 Logic Architecture

- Assumes a segmented FEC scheme (leveraging the work from 802.3cw)
 - Compatible with the architecture adopted in gustlin 3df_01a_220517
 - Separate FEC code for electrical and optical interfaces decouples the AUI and PMD developments (simpler and lower risk)
 - Optical PMD specs guaranteed to be independent of host AUI speed
- 800GMII Extender provides the electrical interface (AUI)
 - 800GAUI-8: already defined in 802.3df (no additional work necessary)
 - 800GAUI-4: will be defined in 802.3dj

Note: "FEC2" in the above figure could be a concatenated FEC code.

800GBASE-LR1/ER1 PHY Architecture

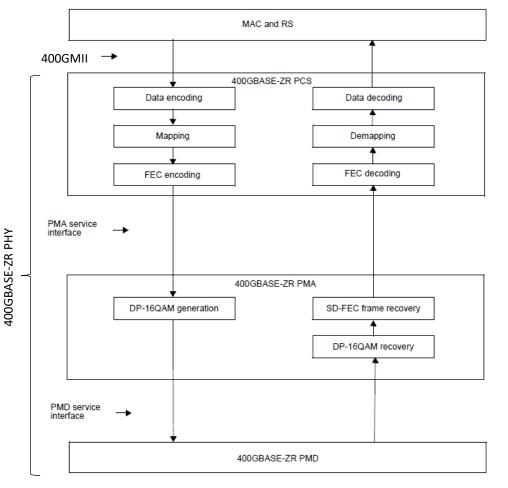


Figure 155–1—400GBASE-ZR PCS and PMA high level block diagram

- 800GBASE-LR1/ER1 PHY only needs to support the optical interface
 - No optional physically instantiated AUI
 - AUI is provided by the 800GMII Extender
- Leverages the extensive ongoing efforts in 802.3cw to define an 802.3 PHY documentation structure to support a coherent optical interface
 - Split of functionality between PCS, PMA and PMD
 - Definition of PMA and PMD services interfaces
- Should be possible to define an 800GBASE-LR1/ER1 logic baseline fairly quickly (and independent from any activities on 200G/lane electrical interfaces)

800GBASE-LR1 and ER1 Laser definition

- Propose 1550nm based laser
 - Consistent with ZR
 - Avoids excessive loss in ER1 application
 - Supports 18km reach when using same link budget as 10km O-band
 - Enables interop between LR1 <-> ER1 <-> ZR
- Tunable laser for ZR as defined by OIF fully tunable, DWDM capable
- ER1 Transmitter single fixed λ , temp controlled laser (e.g. DFB), amplifier
 - Reduced performance specs vs ZR
 - SOA or μEDFA amplifier
- LR1 Transmitter single fixed λ , temp controlled laser (e.g. DFB)
 - No amplification required to close LR link

Relaxed laser specs and **reduced testing** requirements for ER/LR compared to ZR DWDM

Transmitter Specifications

Description	800G-LR1	800G-ER1	Unit
Signaling rate	118.2	118.2	Gbd
Modulation format	DP-16QAM	DP-16QAM	
Channel frequency (Nominal)	193.7	193.7	THz
Channel frequency accuracy (+/-)	+/- 1.8	+/- 1.8	GHz
Average launch power (min)	-10	-2	dBm
Average launch power (max)	-6	2	dBm
Average launch power of OFF transmitter (max)	-20	-20	dBm
Laser linewidth (max)	1.0	1.0	MHz
I/Q phase error (+/-)	5	5	Deg
I/Q quadrature skew (max)	0.75	0.75	Ps
I/Q amplitude imbalance (mean)	1	1	dB
Transmitter EVM	12	12	%

Parameters in blue represent spec relaxations compared to ZR optics

Transmitter Specifications (cont.)

Description	800G-LR1	800G-ER1	Unit
Transmitter OSNR	35	35	dB
Power difference between X and Y polarizations (max)	1.0	1.0	dB
Skew between X and Y polarizations (max)	5	5	ps
Transmitter reflectance (max)	-20	-20	dB
RIN average	-145	-145	dBc/Hz
RIN peak	-140	-140	dBc/Hz

Receiver Specifications

Description	800G-LR1	800G-ER1	Unit
Modulation format	PM-16QAM	PM-16QAM	
Frequency offset between received carrier and local oscillator	+/-3.6	+/-3.6	GHz
Receive sensitivity	-17.3	-17	dBm
Average receive input power (max)	+3	+3	dBm
CD tolerance (max)	200	800	ps/nm
Peak PDL tolerance	1.5	1.5	dB
DGD	5	10	ps
SOP tolerance	5	5	krad/s

Illustrative Link Budgets

Parameter	800G-LR1	800G-ER1	Unit
Power budget	6.8	15	dB
Operating distance	18	40	Km
Channel insertion loss	6.3	14	dB
Allocation for penalties	0.5	1.0	dB

Summary

- The industry will benefit from alignment of all coherent specifications using a common FEC enabling interoperable ZR, ER and LR
 - A coherent implementation based on oFEC can support all of these applications enabling cost optimization for the lower volume applications through technology reuse and simplified testing with higher manufacturing yields
 - Power/latency optimized implementations could also be supported
 - Reduced decoder iterations would maintain interop
 - Further latency reduction could be achieved by bypassing or modifying the interleaver
 - Robust specifications tolerant to existing fiber specs capable of supporting both datacom and telecom requirements