Architectural Considerations for Type 2 PHY/FEC Scheme

(Concatenated FEC) for 200G per Lane IMDD

Xiang He, Huawei Technologies

Introduction

- Before we can develop a full baseline for Type 2 PHY/FEC, we need to reach consensus on the architecture first.
- The intention is to provide the architecture for all the Ethernet rates from 200GE to 1.6TE.
- The intention is to be inclusive of all proposals being considered.

Type1/2/3 PHY/FEC Schemes

- In brown_3dj_optx_adhoc_01a_230222, three types of PHY/FEC schemes were named and illustrated.
- The PMA below FEC₁ is different from the BASE-R PMA, and requires dedicated clauses to describe the functions and service interfaces.
 - FEC₁ is referred to as FEC_1, and PMA below FEC₁ is referred to as PMA_1 in this presentation.

Type 2 PHY/FEC scheme

Type 3 PHY/FEC scheme

List of Things to Consider

- 1. PHYs being addressed
- 2. PHY/FEC type
- 3. # of AUIs per PHY link
- 4. Assumed BER per AUI and burst error characteristics
- 5. PMD Link Burst Error Characteristics
- 6. Inner FEC Encode
- 7. Inner FEC pre-encoding interleaving characteristics
- 8. Post-encoding interleaving

PHYs Being Addressed

Ethernet Rate	Assumed Signaling Rate	AUI	BP	Cu Cable	MMF 50m	MMF 100m	SMF 500m	SMF 2km	SMF 10km	SMF 40km
200 Gb/s	200 Gb/s	1 lane		1 pair			1 pair	1 pair		
400 Gb/s	100 Gb/s							4 pairs		
	200 Gb/s	2 lanes		2 pairs			2 pairs			
800 Gb/s	100 Gb/s	8 lanes	8 lanes	8 pairs	8 pairs	8 pairs	8 pairs	8 pairs		
	200 Gb/s	4 lanes		4 pairs			4 pairs	1) 4 pairs 2) 4 λ's		
	200 Gb/s (TBD)								Single SMF 4 λ's (TBD)	
	800 Gb/s (TBD)								Single SMF 1 λ (TBD)	Single SMF 1 λ (TBD)
1.6 Tb/s	100 Gb/s	16 lanes								
	200 Gb/s	8 lanes		8 pairs			8 pairs	8 pairs		

- Assuming that a concatenated inner FEC is required, this may apply to all PHYs highlighted.
- Two AUI segments each side can be supported if the BER for each is below 5E-5.
- One AUI segment with higher BER (<1E-4) can be allowed on each side.

Fit Into the Adopted Architecture

• This proposal fits within the adopted 802.3dj logic architecture.

New Clauses and Subclauses

- Overview
 - Scope of inner FEC (FEC_I) and PMA_I sublayer, type 200GBASE-DR1/FR1, 400GBASE-DR2, 800GBASE-DR4/DR4-2/FR4/LR4 and 1.6TBASE-DR8/DR8-2
 - Relationship of FEC_I and PMA_I sublayers to other standards
 - Inter-sublayer interfaces
 - Functional block diagram
- FEC_I (Inner FEC) sublayer
 - Transmit: pre-encoding (convolutional) interleaver, FEC_I encode and post-encoding (PAM4 symbol) interleaver
 - Receive: pre-decoding (PAM4 symbol) de-interleaver, FEC_I sync, FEC_I decode and post-decoding de-interleaver
 - Bypass of pre-encoding interleaver
 - FEC_I degrade monitoring
- PMA_I sublayer
 - Overview
 - Service interface
 - Functions within the PMA, including soft-decision information for FEC_I decoding.
- Detailed functions and state diagrams
- Delay constraints

Transmit and Receive Flow of FEC_I Sublayer

- Rely on BASE-R PMA FEC-symbol-pair muxing discussions for 200G/lane PMDs.
- The "AM lock and symbol-pair/quartet deskew" function is required if BASE-R PMA does not provide symbol boundary information.

Transmit and Receive Flow of FEC_I Sublayer (alternate)

- Rely on BASE-R PMA FEC-symbol-pair muxing discussions for 200G/lane PMDs.
- The BASE-R PMA indicates the symbol-pair/quartet boundary, or transmit symbols in 20b/40b groups.

in ran_3dj_01_2303.

Transmit and Receive Flow of PMA_I Sublayer

- The PMA service interface is provided to allow the inner FEC sublayer to transfer information to and from the PMD sublayer.
- The PMA_I:IS_UNITDATA.indication primitive defines the transfer of a FEC_I codeword from the PMA_I to the FEC_I sublayer via the (rx_symbol) parameter.
 - The rx_symbol parameter conveys the sampled PAM4 symbols, and the resolution is implementation dependent.

Transmit Functions – AM lock and symbol-pair/quartet deskew

- Data obtained from PMA shall be aligned to symbol-pair (20b) boundary for 200 GbE and 400 GbE, or symbol-quartet (40b) boundary for 800 GbE and 1.6 TbE.
 - There is no need to perform full PCS lane deskew.
- It is recommended to include this function in the BASE-R PMA, and making the FEC_I sublayer generic through all Ethernet rates with 200G/lane optical PMDs.

Transmit Functions – Pre-encoding interleaver

- The pre-encoding interleaver is a convolutional interleaver which could have a lower latency than a block interleaver with the same interleaving depth.
 - It contains M parallel delay lines (branches) with decreased delays from branch 0 to M-1.
 - Data sequence from the BASE-R PMA lane is distributed in fixed-size blocks to the M branches sequentially in a round-robin fashion.
 - The number M, N and D are code dependent.

- The pre-coding interleaver should be excluded for DR/DR-2 links.
 - Preferred to be PMD dependent. It can also be transmitter controlled.
 - For DR/DR-2 links, data from BASE-R PMA can be directly encoded by FEC_I.

Transmit Functions - FEC_I Mapping

- Data mapping into FEC_I payloads should be defined based on whether pre-encoding interleaver is used.
 - Based on convolutional interleaver design, mapping may be different. Existing proposals have given clear mapping methods.
 - If pre-encoding interleaver is used, FEC_I payload should be aligned to symbol-pair/quartet boundarie.

- If convolutional interleaver is excluded, the bit stream can be encoded directly.
- Padding bits, if needed, can be inserted before encoding as FEC_I payloads.

Transmit Functions – FEC_I Encode

- Different encoding methods have been proposed.
 - BCH polynomial as proposed in <u>he_3df_01_221005</u>, and in <u>back up slide</u>.
 - For 8-bit parity calculation, we could either use an 8th order polynomial as a primitive code, or use a 7th order poly times a (x+1) term as an extended code.
 - The XOR(MSB/LSB) method as proposed in <u>bliss_3df_01b_2211</u>.
 - The Hamming generation matrix with XOR(MSB/LSB) as proposed in <u>farhood_3dj_01a_230206</u>.
 - As proposed, there is not enough information for implementation.

Transmit Functions – Post-encoding PAM4 symbol interleaver

- The PAM4 symbol interleaver (aka channel interleaver) can help light bursts on PMD.
 - Simulation result has been provided in back up <u>slide #27</u>.
 - It can be deleted if later determined to be unnecessary based on optical track discussions on 200G/lane IMDD PMDs.
 - If not required, this function can be deleted and FEC_I codewords are directly mapped to PAM4 symbols.

Receive Functions – Soft information signaling

- Each PAM4 symbol is sampled into an implementation dependent format, with more than 2 bits of resolution for each PAM4 unit interval.
- Each sample is transferred to the FEC_I sublayer through the PMA service interface.
 - Soft-decoding is required to achieve the PMD BER threshold.
 - Implementation can have the freedom to reduce the sample resolution or disable the soft-decoding to save power and latency, if it finds the BER is low enough.

Receive Functions – pre-decoding de-interleaving and FEC_I sync

- PAM4 de-interleaving can be performed arbitrarily, leaving the synchronization and reorder function to find the FEC_I codeword boundaries and orders.
- Each row can use self-sync method as shown in <u>slide #26</u>.
 - After each row of codewords are synchronized, the row where the boundary shifts one symbol ahead is the leading codeword for each group of N interleaved codewords.
- Synchronization can also be obtained by using alignment markers when padding is used.

PAM4 symbol de-interleave to N lanes of codeword streams. The order of codewords is intentionally shown out of order.

IEEE P802.3dj Task Force

Receive Functions – FEC_I decode

- Decoding of FEC_I is implementation dependent.
 - Using soft-decision or hard-decision is also implementation dependent and does not affect interoperation, but will
 result different BER thresholds.
 - BER thresholds shall be given explicitly with AUI BER taken into account. <u>Slide #25</u> in back up gives an example.

Receive Functions – FEC_I demapping

- Once decoded, the demapper restores the FEC_I payload data into multiple branches for the convolutional de-interleaver.
- It is the reverse function of FEC_I mapping.
 - Paddings, if used, can be removed here.

Receive Functions – de-interleaver

- The convolutional de-interleaver shall perform the reverse function of the interleaver and produces data sequence as it was sent out of the BASE-R PMA.
- When the pre-encoding interleaver (convolutional interleaver) is excluded, the de-interleaver is also excluded.
- The synchronized FEC_I codewords can guarantee a successful de-interleaving.

FEC_I Degrade Monitoring

- Counters can be used to monitor the codeword error ratio of FEC_I for a given period of time.
 - Detailed usage can be further discussed.
- The propagation of FEC_I degrade signals is implementation dependent.

Summary

- This presentation illustrates the concatenated FEC may be fit into the 802.3 architecture.
- A complete baseline should include all transmit and receive functions.
- Leveraging the symbol-pair muxing PMA work may simplify the FEC_I sublayer.

Thank you

Back up slides

PMD BER Threshold Considering AUI

- Up to 2 segments of AUI on each side, not including MII Extenders, shall be supported.
- The combined effect of FEC_I and FEC_o results in the target frame loss ratio (FLR) for the PHY.
 - AUI BER threshold will affect the PMD BER allowed.
 - BER threshold listed below are updated data based on <u>he_3dj_01a_230206.pdf</u> and <u>he_3df_01_2211.pdf</u>.

AUI BER (each segment)	PMD (w/ Convo. Int.)	PMD (w/o Convo. Int.)		
1E-5	4.4E-3*	3.1E-3*		
5E-5	3.5E-3*	2.4E-3*		

*Assuming the error statistics are sufficiently random. If the error statistics are not sufficiently random, the BER allowed shall be lower.

Receive Functions – FEC_I self-sync

- Follows Firecode methodology.
- Steps:
 - 1. Search and Test: Check *N* codewords, see if at least *n* of them are correct.
 - More preferably, we can try all possible positions, check *N* codewords for each position, and pick the position that has the most correct codewords. This may require less iterations.
 - 2. Validate: See in the following *P* codewords, if at least *p* codewords are also good.
 - If so, sync established. If not, go back to step 1.
 - If the number N in step 1 is large enough, step 2 may not be needed.
 - 3. Monitor and Drop: When there are m codewords with errors in the following M codewords.
 - Same methodology as hi_ser.

Effect of PAM4 Symbol Interleaver

- Following table lists BER threshold for BCH(144,136) with 8:1 post-encoding PAM4 symbol interleaver.
- The latency of 8:1 PAM4 interleaver is about ~5ns. The FEC_I decoding latency is about ~10ns.

AUI (Fixed total BER)		Optical PMD						
"a"		1-tap DFE value ^ь	w/ 8:1 PAM4 syı	mbol interleaver	w/o 8:1 PAM4	Improvement,		
	4X AUI IOTAI BER		SNR, dBe	BER℃	SNR, dBe	BER⁰	dBe	
0.5	4E-5 (4x1E-5)		14.99	4.50E-03	14.99	4.50E-03		
		0.28	15.15	4.38E-03	15.31	3.81E-03	0.16	
		0.5	15.93	3.07E-03	16.52	1.64E-03	0.59	
0.75 ^a	4E-5 (4x1E-5)		15.01	4.43E-03	15.01	4.43E-03		
		0.28	15.16	4.34E-03	15.33	3.75E-03	0.17	
		0.5	15.94	3.04E-03	16.53	1.62E-03	0.59	
0.5	2E-4 (4x5E-5)		15.16	3.93E-03	15.16	3.93E-03		
		0.28	15.30	3.85E-03	15.49	3.25E-03	0.19	
		0.5	16.08	2.64E-03	16.78	1.21E-03	0.70	
0.75 ^a	2E-4 (4x5E-5)		15.27	3.55E-03	15.27	3.55E-03		
		0.28	15.41	3.49E-03	15.61	2.91E-03	0.20	
		0.5	16.19	2.35E-03	16.97	9.63E-04	0.78	

a. Precoding is turned on.

- b. 1-tap DFE is used to simulate error propagation instead of using error propagation probability "a" value. Tap value of 0.28 is equivalent to a = 0.1, and tap value of 0.5 is equivalent to a = 0.375.
- c. The BER values includes additional errors due to bursts and the effect of precoding.