200G/lane PAM4: Error Profile Error Propagation and Error Correction Considerations

Part2 -Effects of precoding and Inner FEC code

Upen Reddy, Kareti
David, Nozadze
Cisco Systems Inc.

Overview

This is continuation of the work presented in kareti 3dj 01a 230116 to further investigate by using Monte Carlo analysis

- The effectiveness of (1+D) precoding, when skip level errors and high level of correlated errors exist
- The effectiveness of Inner FEC code like BCH $(144,136)$ to accommodate higher level of DER_0 in optical sub-link

Precoding : Link with DER_0 of 1e-4, random errors only cisco (DFE tap1 =0/a=0)

DERO=1e-4	DER	CER (analytical)	Prob of Skipped 2 level symbol errors (analytical)	Skipped 2 level symbol errors (monte-carlo)	Prob of Skipped 2 level symbol errors (monte-carlo)
average burst length (monte-carlo)					
w/ precoder	$2.0 \mathrm{E}-04$	$9.7 \mathrm{E}-15$	0.25	135525	
w/o precoder	$1.0 \mathrm{E}-04$	$2.7 \mathrm{E}-23$	N.A.	2	N.A.

[^0]
Precoding : Link with DER_0 of 1e-4, with correlated errors including skip level errors(DFE tap1 $=1 / \mathrm{a}=0.75$)

DERO=1e-4	DER	CER (analytical)	Prob of Skipped 2 level symbol errors (analytical)	Skipped 2 level symbol errors (monte-carlo)	Prob of Skipped 2 level symbol errors (monte-carlo)	average burst length (monte-carlo)
w/precoder	$2.0 \mathrm{E}-04$	$1.47 \mathrm{E}-11$	NA	113838	0.21	
w/o precoder	$4.0 \mathrm{E}-04$	$2.77 \mathrm{E}-08$	N.A.	N.A.	2	

Precoding : Error patterns with and without skip level errors

adjacent level errors only (no skipped level errors)

- Two consecutive symbol errors becomes 2 single symbol errors

- Four consecutive symbol errors can result one two symbols and one single symbol errors

- Single symbol errors
becomes single two symbol error
single skipped error in the beginning of burst

- Two consecutive symbol errors can result 3 single symbol errors

- Single symbol errors
becomes single two symbol error
- After precoder both errors can be skipped error

Concatenated sub-links

\qquad

- Data is received and re-transmitted without error corrections
- Two Monte Carlo models are simulated:

1. At each $R X, D E R O=1 e-4, a=0.75$
2. At each RX, DERO=1e-4, DFE tap1=1

- RS 544 FEC at each sub-link
- 5.44 e 9 symbols simulated

Concatenated Sub-links: High level of skip level errors --- dfe1/alpha=1- precoding at all TXs and RXs OFF

DFE1/alpha=1	precoder	DERO	DER DFE	DER MLSD	CER with DFE (analytical)	extrapolated CER with DFE	extrapolated CER with MLSD	average burst length with DFE (monte-carlo)	average burst length with MLSD (monte-carlo)
TX1/Rx1	no/no	1.00E-04	4.0E-04	9.0E-05	2.8E-08			3.99	3.99
TX2/Rx2	no/no	1.00E-04	8.0E-04	1.9E-04	5.0E-07			3.99	3.99
TX3/Rx3	no/no	1.00E-04	1.2E-03	2.8E-04	3.4E-06		3.4e-9	3.99	3.99

	PAM symb \#
Monte Carlo	$5.44 \mathrm{E}+08$

Concatenated Sub-links: High level of skip level errors --- dfe1/alpha=1- precoding at all TXs and RXs ON

Number of symbol errors in RS FEC CW (t count)

DFE1/alpha=1	precoder	DERO	DER DFE	DER MLSD	CER with DFE (analytical)	extrapolated CER with DFE	extrapolated CER with MLSD	average burst length with DFE (monte-carlo)	average burst length with MLSD (monte-carlo)
TX1/Rx1	yes/yes	$1.00 \mathrm{E}-04$	2.0E-04	$4.0 \mathrm{E}-05$	$1.5 \mathrm{E}-11$			1.14	1.14
TX2/Rx2	yes/yes	$1.00 \mathrm{E}-04$	4.0E-04	$9.0 \mathrm{E}-05$	$3.8 \mathrm{E}-09$			1.14	1.14
TX3/Rx3	yes/yes	$1.00 \mathrm{E}-04$	6.0E-04	$1.4 \mathrm{E}-04$	9.7E-08		$1 \mathrm{e}-11$	1.14	1.14

	PAM symb \#
Monte Carlo	$5.44 \mathrm{E}+08$

Concatenated Sub-links: High level of skip level errors --- dfe1/alpha=1

DFE1/alpha=1	precoder	DERO	DER DFE	DER MLSD	CER with DFE (analytical)	extrapolated CER with DFE	extrapolated CER with MLSD	average burst length with DFE (monte-carlo)
TX1/R×1	yes/no	$1.00 \mathrm{E}-04$	$2.0 \mathrm{E}-04$	$4.0 \mathrm{E}-05$	$1.5 \mathrm{E}-11$			1.14
$\mathrm{TX} / \mathrm{Rx} \times 2$	no/no	$1.00 \mathrm{E}-04$	$4.0 \mathrm{E}-04$	$9.0 \mathrm{E}-05$	$3.8 \mathrm{E}-09$			
$\mathrm{TX} 3 / \mathrm{Rx} 3$	no/yes	$1.00 \mathrm{E}-04$	$6.0 \mathrm{E}-04$	$1.4 \mathrm{E}-04$	$9.7 \mathrm{E}-08$			1.14

	PAM symb \#
Monte Carlo	$5.44 \mathrm{E}+08$

Concatenated sub-links : Inner BCH Code

- Data is received and re-transmitted without error corrections
- End2End RS 544 FEC
- Inner FEC at middle sub-link $\operatorname{BCH}(144,136,1)$
- 5.44 e 9 symbols simulated

Concatenated sub-links: w/o vs w/ BCH correction at RX2---Precoding off at all TX/RX

RX1/RX3 DFE=0.7, RX2 DFE=0.2

	DFE	precoder	DER0	extrapolated CER with DFE for case 1	extrapolated CER with DFE for case 2	average burst length with DFE (w/ BCH)	average burst length with DFE (w/o BCH)
TX1/Rx1	0.7	no/no	$1.00 \mathrm{E}-05$			3.50	
TX2/Rx2	0.2	no/no	$2.40 \mathrm{E}-04$			2.72	
TX3/Rx3	0.7	no/no	$1.00 \mathrm{E}-05$	$3.8 \mathrm{E}-10$		$1.0 \mathrm{E}-11$	3.04

PAM symbols	$5.44 \mathrm{E}+08$
total number of BCH blocks	$8.00 \mathrm{E}+06$

[^1]| bits error per BCH block | dfe1 at $\mathrm{RX2}=0.2$ |
| :---: | :---: |
| 1 | 136500 |
| 2 | 2646 |
| 3 | 51 |
| 4 | 0 |
| 5 | 0 |

Concatenated sub-links: w/o vs w/ BCH correction at RX2---Precoding off at all TX/RX

RX1/RX3 DFE=0.7, RX2 DFE=0.5

	DFE	precoder	DER0	extrapolated CER with DFE for case 1	extrapolated CER with DFE for case 2	average burst length with DFE (w/ BCH)	average burst length with DFE (w/o BCH)
TX1/Rx1	0.7	no/no	$1.00 \mathrm{E}-05$			3.58	
TX2/Rx2	0.5	no/no	$2.40 \mathrm{E}-04$			2.64	1.54
TX3/Rx3	0.7	no/no	$1.00 \mathrm{E}-05$	$2.5 \mathrm{E}-09$		2.73	

PAM symbols	$5.44 \mathrm{E}+08$
total number of BCH blocks	$8.00 \mathrm{E}+06$

Case1--- no BCH correction
Case2--- $\mathrm{BCH}(144,136,1)$ correction at RX2

bits error per BCH block	dfe1 at $\mathrm{RX2}=0.5$
1	88409
2	31558
3	12041
4	4443
5	1664

Concatenated sub-links: link w/o vs w/ BCH correction at RX2---Precoding off at all TX/RX

RX1/RX3 DFE=0.7, RX2 DFE=0.9

	DFE	precoder	DER0	extrapolated CER with DFE for case 1	extrapolated CER with DFE for case 2	average burst length with DFE (w/ BCH)	average burst length with DFE (w/o BCH)
TX1/Rx1	0.7	no/no	$1.00 \mathrm{E}-05$			3.56	3.59
TX2/Rx2	0.9	no/no	$2.40 \mathrm{E}-04$			4.68	3.94
TX3/Rx3	0.7	no/no	$1.00 \mathrm{E}-05$	$1.6 \mathrm{E}-06$	$2.4 \mathrm{E}-06$	3.40	3.92

PAM symbols	$5.44 \mathrm{E}+08$
total number of BCH blocks	$8.00 \mathrm{E}+06$

Case1--- no BCH correction
Case2--- $\mathrm{BCH}(144,136,1)$ correction at RX2

bits error per BCH block	dfe1 at $R \times 2=0.9$
1	39022
2	26224
3	19373
4	14174
5	10604

Concatenated sub-links:

RX1/RX3 DFE=0.9, DFE=0.2

	DFE	precoder	DER0	extrapolated CER with DFE for case 1	extrapolated CER with DFE for case 2	average burst length with DFE (w/ BCH)	average burst length with DFE (w/o BCH)
TX1/Rx1	0.9	no/no	$1.00 \mathrm{E}-05$			3.94	4.03
TX2/Rx2	0.2	no/no	$2.40 \mathrm{E}-04$			2.97	1.15
TX3/Rx3	0.9	no/no	$1.00 \mathrm{E}-05$	$1.4 \mathrm{E}-09$	$1.9 \mathrm{E}-10$	3.35	1.27

bits error per BCH block	dfe1 at RX2=0.2
1	136463
2	2618
3	51
4	1
5	0

PAM symbols	$5.44 \mathrm{E}+08$
total number of BCH blocks	$8.00 \mathrm{E}+06$

Concatenated sub-links: w/o vs w/ BCH correction at RX2---Precoding off at all TX/RX

RX1/RX3 DFE=0.9, RX2 DFE=0.5

	DFE	precoder	DER0	extrapolated CER with DFE for case 1	extrapolated CER with DFE for case 2	average burst length with DFE (w/ BCH)	average burst length with DFE (w/o BCH)
TX1/Rx1	0.9	no/no	$1.00 \mathrm{E}-05$			4.04	
TX2/Rx2	0.5	no/no	$2.40 \mathrm{E}-04$			2.68	4.08
TX3/Rx3	0.9	no/no	$1.00 \mathrm{E}-05$	$7.7 \mathrm{E}-09$		$2.2 \mathrm{E}-10$	1.71

PAM symbols	$5.44 \mathrm{E}+08$
total number of BCH blocks	$8.00 \mathrm{E}+06$

Case1--- no BCH correction
Case2--- $\mathrm{BCH}(144,136,1)$ correction at RX2

bits error per $B C H$ block	dfe1 at $\mathrm{RX2}=0.5$
1	88510
2	31655
3	12029
4	4542
5	1614

Concatenated sub-links: w/o vs w/ BCH correction at RX2---Precoding off at all TX/RX

RX1/RX3 DFE=0.9, RX2 DFE=0.9

	DFE	precoder	DER0	extrapolated CER with DFE for case 1	extrapolated CER with DFE for case 2	average burst length with DFE (w/ BCH)	average burst length with DFE (w/o BCH)
TX1/Rx1	0.9	no/no	$1.00 \mathrm{E}-05$			3.95	
TX2/Rx2	0.9	no/no	$2.40 \mathrm{E}-04$			4.71	
TX3/Rx3	0.9	no/no	$1.00 \mathrm{E}-05$	$3.7 \mathrm{E}-06$		4.96	

bits error per BCH block	dfe1 at RX2=0.9
1	38956
2	26259
3	19327
4	14558
5	10532

PAM symbols	$5.44 \mathrm{E}+08$
total number of BCH blocks	$8.00 \mathrm{E}+06$

Case1--- no BCH correction
Case2--- $\mathrm{BCH}(144,136,1)$ correction at RX2

- Data is received and re-transmitted without

Concatenated sub-links : Inner BCH Code

 error corrections- End2End RS 544 FEC
- Inner FEC at middle sub-link $\operatorname{BCH}(144,136,1)$
- 5.44 e 9 symbols simulated

Concatenated sub-links: -Precoding off at all sub-links and $\mathrm{CI}(4)$ Off

Abstract

Concatenated sub-links: -Precoding on at AUI sub-links and $\mathrm{Cl}(4)$ Off

Concatenated sub-links: -Precoding on at AUI sub-links and $\mathrm{CI}(4)$

Summary

- Precoding When Skip level error present
- After decoding pre-code, the data stream have higher bit errors compared to when there are no skip level errors
- No significant impact to error rate as skip level errors are relatively a few even for DFE tap1 = 1
- Inner FEC code (BCH $(144,136, \mathrm{t})$:
- Shown how many BCH bit error corrections are needed for various levels of correlated errors and Optical link target DER_Os (2.4e-4, 3.3e-3, 4.6e-3)
- Precoding on AUI links and 4 Codeword RSFEC interleave are very helpful

Next steps

Look into Multipart links : 2 AUI sub-links on both sides of Optical sub-link for find solution space for different FEC strategies

- End2End RS 544 FEC
- Segmented FEC
- Concatenated FEC - End2End FEC with optical sub-link with Inner FEC code like BCH(144,136,t)

[^0]: PAM symb \#

 | Monte Carlo | $2.72 \mathrm{E}+09$ |
 | :--- | :--- |

[^1]: Case1--- no BCH correction
 Case2--- BCH $(144,136,1)$ correction at RX2

