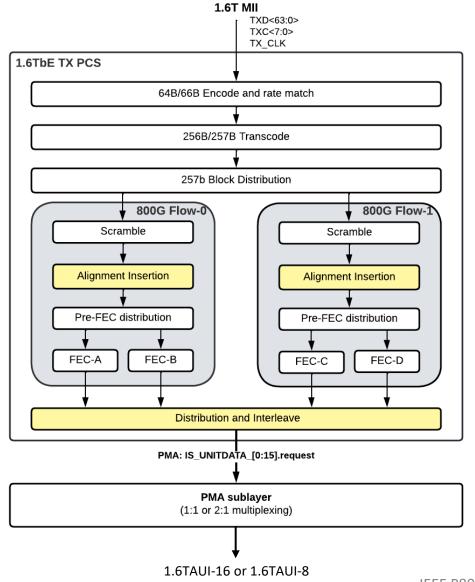
# Baseline Proposal for 1.6TbE PCS Lane Formation and AM Insertion

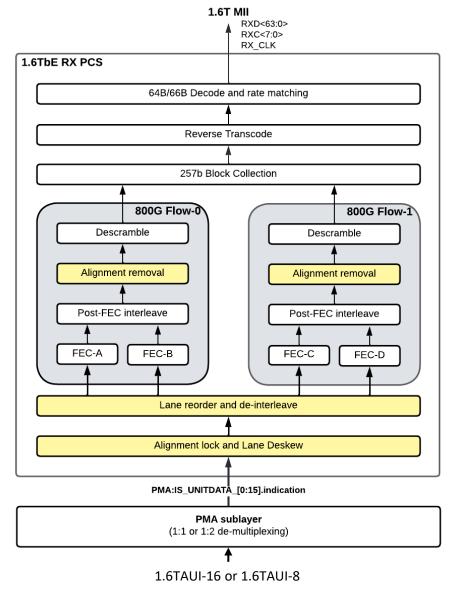
Eugene Opsasnick (Broadcom), Kapil Shrikhande (Marvell), Jeff Slavick (Broadcom)

IEEE P802.3dj Task Force Plenary Meeting, March 2023

#### **Contributors and Supporters**

- Mark Gustlin, Cisco
- Adee Ran, Cisco
- Daniel Koehler, Synopsys
- Gary Nicholl, Cisco
- Arthur Marris, Cadence
- Eric Maniloff, Ciena
- Jerry Pepper, Keysight
- Kent Lusted, Intel
- Matt Brown, Huawei
- David Ofelt, Juniper
- Shawn Nicholl, AMD
- Tom Huber, Nokia
- Ted Sprague, Infinera
- Xinyuan Wang, Huawei
- Xiang He, Huawei
- Zvi Rechtman, Nvidia


- Ben Jones, AMD
- Rick Rabinovich, Keysight
- Viet Tran, Keysight
- Howard Heck, Intel
- Jeffery Maki, Juniper Networks
- Shimon Muller, Enfabrica
- Ed Nakamoto, Spirent
- Dave Estes, Spirent
- Chris DiMinico, PHY-SI/SenTekse/MC Communications
- Cedric Lam, Google
- Kenneth Jackson, Sumitomo Electric
- Frank Effenberger, Futurewei Technologies
- Roberto Rodes, Coherent
- Chris Cole, Quintessent
- Leon Bruckman, Huawei
- David Malicoat, Malicoat Networking Solutions




#### Scope

- 1.6TbE PCS Baseline adopted 2/6/23
  - gustlin 3dj 01b 230206.pdf (slides 6-12) Motion #10.
  - Includes all PCS blocks except PCS lane formation and AM Insertion/Removal
- Scope of this presentation:
  - Specify the PCS Lane Formation and associated AM Insertion details
    - See highlight sub-blocks on next slide
  - FEC degrade signaling and HI\_SER monitor across the PCS flows
- Together, the two presentations complete the 1.6TbE PCS baseline for 802.3dj
  - Any 800GbE PCS function not explicitly called out is to be included

#### 1.6TbE PCS Functional Blocks – TX and RX







#### 1.6TbE PCS Lane Formation

 Round-robin distribution of 10-bit RS-FEC symbols

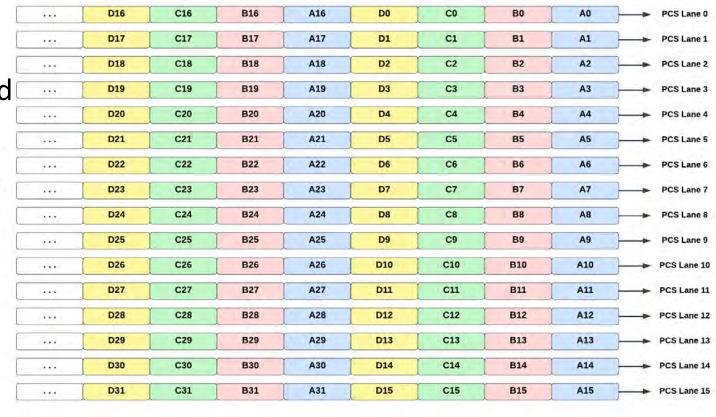
All 4 RS-FEC CW are distributed into 16 PCS Lanes

Flow0 FEC-A

Flow0

FEC-B

Flow1 FEC-C

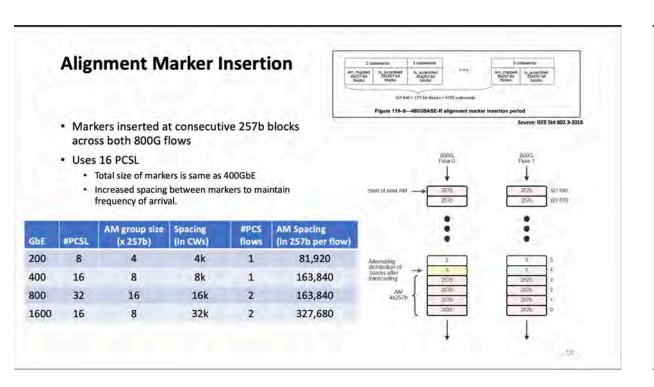

Flow1 FEC-D

100G per PCS lane

 No "checkerboard" pattern on PCS lanes, assuming:

> PMA for 1.6TbE will do symbol muxing

No bitmuxing in PMA




Time



#### **1.6TbE Alignment Markers**

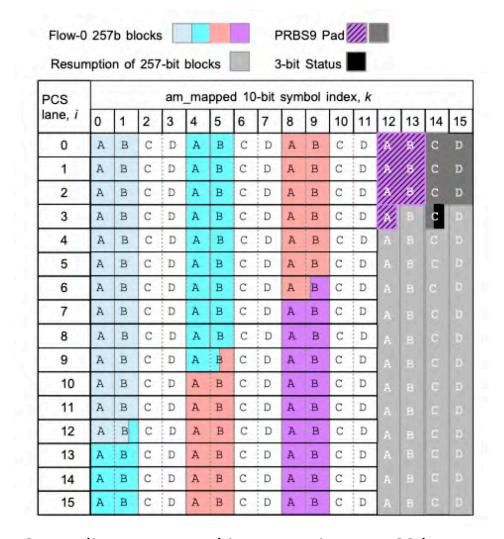
From adopted baseline gustlin\_3dj\_01b\_230206.pdf:



#### **Alignment Marker Encoding**

- With 16 PCSL
- CM0-CM5 and UP0-UP2 are unchanged from 400GbE CL119
- UM0-UM5 are inverted from 400GbE
- Resulting UMs differ from 400GbE and 800GbE
- Clock Content and Baseline Wander Analysis TBD
- UP and UM values can be adjusted if necessary
- Open issue: How to form the AMs in a coherent way so they appear correctly on physical lanes

| PCS    | Encoding |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|--------|----------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane # | СМО      | CM1  | CM2  | UP0  | СМЗ  | CM4  | CM5  | UP1  | UM0  | UM1  | UM2  | UP2  | UM3  | UM4  | UM5  |
| 0      | 0x9A     | 0x4A | 0x26 | 0xB6 | 0x65 | 0xB5 | 0xD9 | 0xD9 | 0xFE | 0x8E | 0x0C | 0x26 | 0x01 | 0x71 | 0xF3 |
| 1      | 0x9A     | 0x4A | 0x26 | 0x04 | 0x65 | 0xB5 | 0xD9 | 0x67 | 0xA5 | 0x21 | 0x81 | 0x98 | 0x5A | 0xDE | 0x7E |
| 2      | 0x9A     | 0x4A | 0x26 | 0x46 | 0x65 | 0xB5 | 0xD9 | 0xFE | 0xC1 | 0x0C | 0xA9 | 0x01 | 0x3E | 0xF3 | 0x56 |
| 3      | 0x9A     | 0x4A | 0x26 | 0x5A | 0x65 | 0xB5 | 0xD9 | 0x84 | 0x79 | 0x7F | 0x2F | 0x7B | 0x86 | 0x80 | 0xD0 |
| 4      | 0x9A     | 0x4A | 0x26 | 0xE1 | 0x65 | 0xB5 | 0xD9 | 0x19 | 0xD5 | 0xAE | 0x0D | 0xE6 | 0x2A | 0x51 | 0xF2 |
| 5      | 0x9A     | 0x4A | 0x26 | 0xF2 | 0x65 | 0xB5 | 0xD9 | 0x4E | 0xED | 0xB0 | 0x2E | 0xB1 | 0x12 | 0x4F | 0xD1 |
| 6      | 0x9A     | 0x4A | 0x26 | 0x3D | 0x65 | 0xB5 | 0xD9 | 0xEE | 0xBD | 0x63 | 0x5E | 0x11 | 0x42 | 0x9C | 0xA1 |
| 7      | 0x9A     | 0x4A | 0x26 | 0x22 | 0x65 | 0xB5 | 0xD9 | 0x32 | 0x29 | 0x89 | 0xA4 | 0xCD | 0xD6 | 0x76 | 0x5B |
| 8      | 0x9A     | 0x4A | 0x26 | 0x60 | 0x65 | 0xB5 | 0xD9 | 0x9F | 0x1E | 0x8C | 0x8A | 0x60 | 0xE1 | 0x73 | 0x75 |
| 9      | 0x9A     | 0x4A | 0x26 | 0x6B | 0x65 | 0xB5 | 0xD9 | 0xA2 | 0x8E | 0x3B | 0xC3 | 0x5D | 0x71 | 0xC4 | 0x3C |
| 10     | 0x9A     | 0x4A | 0x26 | 0xFA | 0x65 | 0xB5 | 0xD9 | 0x04 | 0x6A | 0x14 | 0x27 | 0xFB | 0x95 | 0xEB | 0xD8 |
| 11     | 0x9A     | 0x4A | 0x26 | 0x6C | 0x65 | 0xB5 | 0xD9 | 0x71 | 0xDD | 0x99 | 0xC7 | 0x8E | 0x22 | 0x66 | 0x38 |
| 12     | 0x9A     | 0x4A | 0x26 | 0x18 | 0x65 | 0xB5 | 0xD9 | 0x5B | 0x5D | 0x09 | 0x6A | 0xA4 | 0xA2 | 0xF6 | 0x95 |
| 13     | 0x9A     | 0x4A | 0x26 | 0x14 | 0x65 | 0xB5 | 0xD9 | 0xCC | 0xCE | 0x68 | 0x3C | 0x33 | 0x31 | 0x97 | 0xC3 |
| 14     | 0x9A     | 0x4A | 0x26 | 0xD0 | 0x65 | 0xB5 | 0xD9 | 0xB1 | 0x35 | 0x04 | 0x59 | 0x4E | 0xCA | 0xFB | 0xA6 |
| 15     | 0x9A     | 0x4A | 0x26 | 0xB4 | 0x65 | 0xB5 | 0xD9 | 0x56 | 0x59 | 0x45 | 0x86 | 0xA9 | 0xA6 | 0xBA | 0x79 |


Note: in table above, bolded text indicates inverted values from CL 119 AM values

11

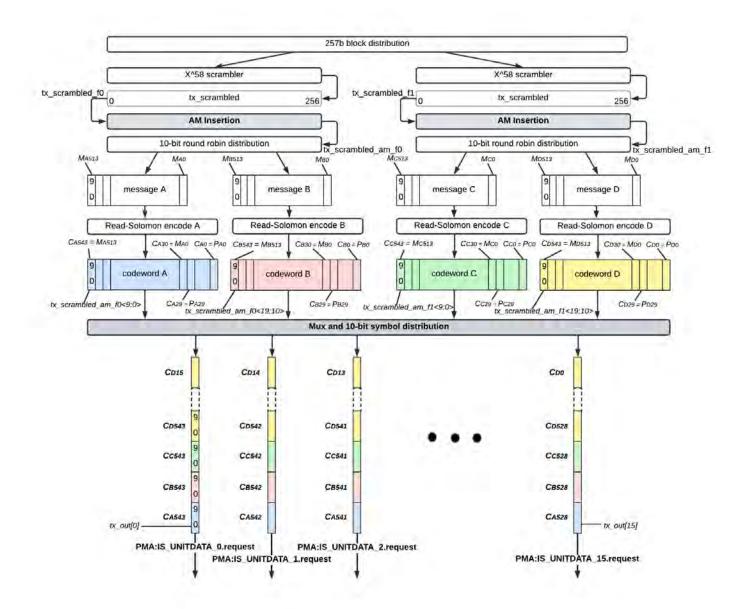


#### 1.6TbE AM pattern across PCS lanes

- AM data is eight 257-bit blocks
  - 4x257b inserted by each flow
- 120-bit AM marker per PCS lane In figure to right:
  - Symbols 0-11 of each lane are defined AM values
  - 257-bit AM blocks inserted by Flow-0 (CW-A and CW-B) highlighted in color
  - Padding in PCSLs 0-3, Symbols 12-15
    - 68-bits padding in Flow-0
    - 65-bits padding + 3-bit status in Flow-1
  - PRBS9 padding data in each flow is independently generated per flow.
    - Each flow should use different seeds for the PRBS9 pattern
  - TX AM status Field (tx\_am\_sf<2:0>)
    - Only at end of padding in Flow-1
    - Status is based on all 4 CWs



1.6TBASE-R Alignment marking mapping to PCS lanes




#### 1.6TbE AM Insertion

- Each flow requires a unique insertion pattern definition to make the AMs appear on the PCS lanes correctly since all 4 CWs are inserted into each PCS lane.
- For each of the sixteen 120-bit AMs:
  - AM bits 0-19, 40-59 and 80-99 come from Flow-0
  - AM bits 20-39, 60-79 and 100-119 come from Flow-1
  - Plus additional padding is added to align to a 257b boundary

#### \*

## 1.6TbE PCS Transmit Symbol Distribution and Bit Ordering



## AM Mapping Pseudo-Code (in CL 119 style)

AM mapping into TX data stream (AM insertion)

## **Pre-FEC and Post-FEC Symbol Distribution Pseudo-Code**

#### Pre-FEC Symbol Distribution

Post-FEC Symbol Distribution

```
for all i=0 to 513

Ma<(513-i)> = tx_scrambled_am_f0<(20i+9):(20i)>

Mb<(513-i)> = tx_scrambled_am_f0<(20i+19):(20i+10)>

Mc<(513-i)> = tx_scrambled_am_f1<(20i+9):(20i)>

Md<(513-i)> = tx_scrambled_am_f1<(20i+19):(20i+10)>
```

```
for all k=0 to 33

for all j=0 to 15

tx_out<64k+j >= Ca<543-16k-j>

tx_out<64k+j+16> = Cb<543-16k-j>

tx_out<64k+j+32> = Cc<543-16k-j>

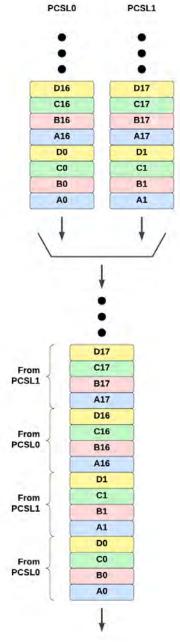
tx out<64k+j+48> = Cd<543-16k-j>
```

<sup>\*\*</sup> tx\_scrambled\_am\_f{0:1}, FEC messages (Ma, Mb, Mc, Md), Codewords (Ca, Cb, Cc, Cd), and tx\_out correspond to labels in the figure on slide 9.



## 1.6TbE RX AM Lock, Reorder, De-interleave and AM Deletion

- Use the same method as 172.2.5.1 for AM lock and deskew for 16 PCS lanes
- After all PCS lanes are aligned, deskewed, and reordered, the PCS lanes are de-interleaved to reconstruct the original stream of four FEC codewords.
- Use the same method as 119.2.5.5 for AM removal and rx\_am\_sf assignment.




## 1.6TbE FEC Degrade Signal Generation and HI\_SER Monitor

- FEC degraded SER functionality is same as CL119 with following exception
  - Symbol errors counted on all PCS lanes, across all 4 FEC codewords
  - Single FEC degrade SER status bit for the 1.6TbE PCS (same as CL119)
    - Different from CL172 which has 2 FEC degrade SER bits that are logically combined into a FEC degrade SER for the 800GbE PCS
  - FEC degrade functionality is optional (same as CL119 and CL172)
- HI\_SER Monitoring is same as CL119 with following exception
  - Symbol errors are counted across all 4 FEC codewords

#### **Notes for PMA Symbol Muxing**

- PMA for 16x100G 1.6TAUI-16:
  - No additional lane muxing (1:1 PCSL to PMA lanes)
- PMA for 8x200G 1.6TAUI-8
  - Requires 2:1 lane mux/de-mux using 40-bit blocks
  - No restrictions on which PCSLs to combine together
  - PMA must align to 4-RS-symbol boundaries
    - Deskew only to 40-bit boundaries
  - Example: Symbol muxing of PCSL #0 and PSCL #1 as shown
    - Resulting RS symbols order:
    - [(A0, B0, C0, D0), (A1, B1, C1, D1), (A16, B16, C16, D16), (A17, ...), ...]
    - With skew, other resulting patterns are possible (e.g. A17 could follow D0)
- A separate proposal is offered for the complete PMA definition



#### Summary

- Suggested course of action
  - Adopt the AM insertion and deletion, PCS lane formation, and FEC degrade signaling as outlined in this presentation for the 1.6TbE PCS.
  - Complete the analysis of Clock Content and Baseline Wander for AM encoding values as specified in gustlin\_3dj\_01b\_23\_0206.pdf
    - If necessary, adjust marker UP and UM values

## **Thanks**

## **Proposed Straw Poll**

• I would support adopting opsasnick\_3dj\_01a\_2303, slides 3, 5-9, 12-13, as a supplement to the previously adopted 1.6TbE PCS baseline from gustlin\_3dj\_01b\_230206.pdf. These two presentations together complete the baseline for the 1.6TbE PCS.

**Y**:

N:

A:

NMI:

## 400GbE AM pattern across PCS lanes (CL 119 – reference)

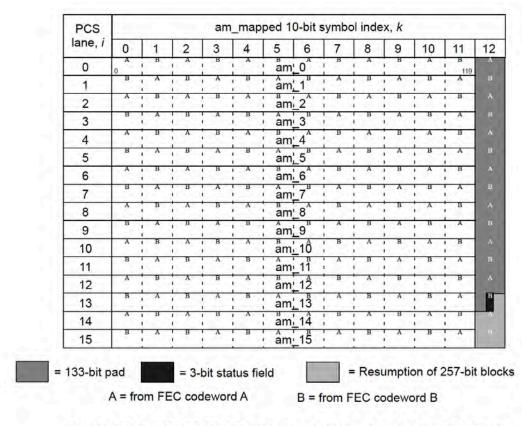



Figure 119-7-400GBASE-R alignment marker mapping to PCS lanes