FEC baseline proposal for 200Gb/s per Lane IM-DD Optical PMDs

Co-Authors:

Lenin Patra, Marvell
Arash Farhood, Marvell
Rajesh Radhamohan, Cisco
Will Bliss, Broadcom
Sridhar Ramesh, Maxlinear
Dave Cassan, Alphawave

Supporters list:

- Ali A. (Reza) Eftekhar, Amazon
- Alex Levin, Microsoft
- Rob Stone, Meta
- Gary Nicholl, Cisco
- Brian Welch, Cisco
- Scott Schube, Intel
- Maxim Kuschnerov, Huawei
- Masoud Barakatain, Huawei
- Kechao Huang, Huawei
- Dirk Lutz, Eoptolink
- K.T. Tsai, Molex
- Vipul Bhatt, Coherent
- Roberto Rodes, Coherent
- Frank Chang, Source Photonics
- Marek Tlalka, Macom
- Kohichi Tamura, Cig
- Chris Cole, Quintessent Inc.
- Atul Srivastava, NEL
- Chris Doerr, Aloe Semiconductor
- Ali Ghiasi, Ghiasi Quantum
- Vasu Parthasarathy, Broadcom
- Tony Chan Carusone, Alphawave
- Jamal Riani, Marvell
- Chungjue Chen, Broadcom
- Henry Wong, Alphawave
- Drew Guckenberger, Maxlinear
- Kishore Kota, Marvell
- Kapil Shrikhande, Marvell
- Rich Melitz, Samtec
- Samuel Kocsis, Amphenol
- Mark Kimber, Semtech

Introduction

This presentation consists of a proposal for the FEC scheme for the following PMDs:

FEC Approach	PMDs
RS(544,514) based	800GBASE-DR4, 800GBASE-DR4-2 400GBASE-DR2, 400GBASE-DR2-2* 200GBASE-DR1, 200GBASE-FR1
RS(544,514) + Hamming (128,120) based	800GBASE-FR4

Proposal is consistent with the adopted P802.3dj architecture: gustlin 3df 01a 220517.pdf

* If objective adopted

Culmination of past contributions for DR \& FR link segments

- January 2023 baseline proposal for Inner FEC for FR4: https://www.ieee802.org/3/dj/public/23 01/23 0206/farhood 3dj 01a 230206.pdf
- AUI BER trade off for Inner code FEC study: https://www.ieee802.org/3/df/public/22 11/farhood 3df 01 2211.pdf
- January Proposal for DR4 mode: https://www.ieee802.org/3/dj/public/23 01/23 0206/welch 3dj 01a 230206.pdf
- A case for Concatenated code :https://www.ieee802.org/3/dj/public/23 03/parthasarathy 3dj 01 2303.pdf

Other supporting presentation:

- https://www.ieee802.org/3/df/public/22 07/patra 3df 01a 2207.pdf
- https://www.ieee802.0rg/3/df/public/22 05/22 0517/bliss 3df 01a 220517.pdf
- https://www.ieee802.org/3/dt/public/22 02/welch 3df 02a 220222.pdf
- https://www.ieee802.org/3/df/public/22 03/welch 3df 01a 220315.pdf
- https://www.ieee802.0rg/3/df/public/22 05/22 0602/welch 3df 01b 220602.pdf
- https://www.ieee802.org/3/df/public/22 07/bernier 3df 01 2207.pdf
- https://www.ieee802.org/3/df/public/22 10/22 1005/simms 3df 01 221005.pdf
- https://www.ieee802.org/3/df/public/22 10/22 1011/welch 3df 01a 221011.pdf
- https://www.ieee802.0rg/3/df/public/22 10/22 1011/ingham 3df 01 221011.pdf
- https://www.ieee802.org/3/df/public/22 11/lu 3df 01a 2211.pdf
- https://www.ieee802.0rg/3/di/public/23 01/23 0206/li 3dj 01a 230206.pdf
- https://www.ieee802.org/3/di/public/23 01/23 0206/li 3dj 01a 23020 6.pdf
- https://www.ieee802.org/3/dt/public/22 10/22 1005/bliss 3df 01 220929.pdf
- https://www.ieee802.org/3/df/public/22 11/huang 3df 01a 2211.pdf
- https://www.ieee802.org/3/dt/public/22 11/he 3df 01 2211.pdf

Adopted logic architecture for reference

gustlin 3df 01a 220517.pdf

This proposal:

Per:
brown 3dj optx adhoc 01a 230222.pdf gustlin 3dj optx adhoc 01a 230222.

Proposed 800GbE/1.6TbE Architecture

- How various FEC schemes fit into the architecture
- FECs might or might not be reused across schemes

FEC1	$=$ End to End FEC
FEC2	$=$ AUI FEC for Segmented
FEC3	$=$ PMD FEC for Segmented
FEC4	$=$ Outer FEC for Concatenated
FEC5	$=$ Inner FEC for Concatenated

Stack \#2 FEC Locations for Segmented option

Stack \#3
FEC Locations for Concatenated option

Both approaches support segmentation of the KP4 FEC using extender sublayer, if needed.

This presentation provides a baseline proposal for these two new sublayers

Adopted architecture for inner code FEC

- The following presentation describes a new FEC sublayer to be used in conjunction with 800GBASE-FR4 PMDs
- It is compatible with the Type 2 FEC schemes as described in brown 3dj optx adhoc 01a 230222
- It is compatible with the PCS and PMA defined for $800 \mathrm{~Gb} / \mathrm{s}$ Ethernet
- Although, the diagram shows only one AUI per direction, it is understood there may be up to two AUls per direction.

Functionality of FEC sublayer block diagram

Transmit path

- Encode p PCS lanes into q physical lanes
- All the encoding is done per PCS lane
- Circular Shift block maximizes the distance in Bauds between transmitted PAM4 symbols from two different RS symbols in the same RS $(544,514)$ FEC
- Circular shift, Hamming Encoder, Hamming Interleaver and padding functionality are provided in details in the subsequent slides

Receive path

Detailed representation of Transmit Datapath with Inner code $(128,120)$ and padding

Convolutional Interleaving (CI): To form Hamming payload as $12 \times 10 \mathrm{~b}$ KP4 symbols
Circular shift: To enable a simple 2-bit MUXing for the Hamming Interleaver
Hamming Encoder: Appends 8b parity to 120b payload
Hamming Codeword Interleaver: 8-ways Hamming Interleaving is proposed

- The 8 ENC outputs are aligned with respect to Hamming codeword boundaries
- The 8 ENC@25G codewords are round-robin inter-leaved, in units of 2 b per FECL

Padding bits:

- Padding Symbol: 384 bits (3×128 bits) being inserted after every 3264 hamming codewords on TX
- On RX: Padding bits needs to be removed before any processing happens

Detailed representation of Receiver Datapath with Inner code $(128,120)$ and padding

- FS Lock: 6 bytes out of 384 pad bits can be used for frame synchronization (i.e. similar to 400G PCS AM scheme which offers DC balance \& hardware reusability)
- See Appendix A for an example

Inner code $(128,120)$ based on Hamming $(68,60)$

- 60b Hamming payload is formed by XOR of bits in $2 b x 60$ input
- As an example refer to scheme :
https://www.ieee802.org/3/df/public/22 10/22 1005/bliss 3df 01 220929.pdf
- Same rate as extended hamming code (128/120) and block length of 128 b
- Input is aligned with incoming $12 \times 10 b$ RS symbols from Host
- 1b per payload PAM4 UI, 2b per parity PAM4 UI
- Benefits of smaller area due to reduction in logic for syndrome/parity calculation

Insertion of padding bits to make the line rate a multiple of 156.25 MHz reference clock frequency

- Padding Symbol: 384 bits (3×128 bits) being inserted after every 3264 hamming codewords on TX
- Inner Code $(128,120)$ baud rate without padding $\rightarrow 113.3333 G B a u d$
- Inner code $(128,120)$ baud rate with padding $\rightarrow 113.4375 \mathrm{GBaud}-\mathrm{i} . \mathrm{e}$., an integer multiple of $156.25 \mathrm{M}^{*} \mathbf{7 2 6}$
- On RX: Padding bits needs to be removed before any processing happens
- The DC balanced pad bits includes Framing Sequence (FS) to help identifying the location of the pad bits as well as the boundary and the order of each inner code $(128,120)$. For the rest of the contents of the $3^{* 128=384}$ pad bits, please refer to appendix A of this presentation

RS(544,514) +Inner Code $(128,120)$: Convolutional Interleaver

- Convolutional Interleaver (CI) implementation guarantees that the 12×10 bit payload of the Hamming encoder comes from 12 distinct RS codewords
- It also helps with randomly breaking up burst errors and make the concatenated code operates closer to AWGN limit

8 parity bits are computed over 12 (10b) RS Symbols, each RS symbol from distinct codewords

Parameterized view of per-lane Convolutional Interleaver

- Convolutional Interleaver is defined per FECL lane
- Parameters for the per-lane Convolutional Interleaver
- W: Number of KP4 RS codewords in each "word"
- P: Number of sub-lanes of interleaver
- D: Number of "word" delays
- k:Time index
- in[k]: Input "word" at time index k
- out[k]: Output "word" at time index k

W-symbol words at interleaver input are round-robin distributed to P sublanes

W-symbol words from P sub-lanes are round-robin multiplexed to interleaver output

Illustration : 800G/400G mode (2 way interleaved) Convolutional Interleaver

- 20b (FEC_A,FEC_B) symbols represented by A[m]
- Delay lines operate on 20 b symbols
- 544/16=34
- $A[m]$ and $A[m-n]$ are guaranteed to come from distinct RS codewords if $n>=34$
- 6 "branches" of Cl due to 6 -way interleaving of (FEC_A,FEC_B) symbols in Hamming payload - Hamming payload is (A[6k-180],A[6k-143],A[6k-106],A[6k-69],A[6k-32],A[6k+5])
- Input/output switches are always in sync, but no requirement to sync relative to AM position
- At TX, switches move from top to bottom
- Synchronization at RX is implied by Hamming codeword boundaries (i.e., Hamming sync implies Cl sync)

Translating this to Parametrized $C l$ will result in $W=2, P=6, D=6$

Illustration: 800G mode (4 way interleaved) Convolutional Interleaver

- 40b (FEC_A,FEC_B, FEC_A,FEC_B) symbols represented by A[m]
- Delay lines operate on 40 b symbols
- Total Latency (CI+CDI): 36x40=1440b @ 25G

Translating this to Parametrized $C I$ will result in $W=4, P=3, D=6$

Illustration: 200G (2 way interleaved) Convolutional Interleaver

- 20b (FEC_A,FEC_B) symbols represented by A[m]
- Delay line operates in 20b symbols
- 544/8=68
- $A[m]$ and $A[m-n]$ are guaranteed to come from distinct RS codewords if $n>=68$
- 6 "branches" of Cl due to 6-way interleaving of (FEC_A,FEC_B) symbols in Hamming payload
- Hamming payload is (A[6k-360],A[6k-287],A[6k-214],A[6k-141],A[6k-68],A[6k+5])

Translating this to Parametrized CI will result in $W=2, P=6, D=12$

Functionality of the circular shift block

- Circular Shift block can be simply visualized as a simple rewiring of the 10b RS symbols (120b input bus) to the Inner code $(128,120)$ block
- It maximizes the distance in Bauds between transmitted PAM4 symbols from two different RS symbols in the same KP FEC codeword
- Concept is very similar to the 200G AUI symbol muxing scheme to improve the burst error tolerance

See the Burst Error tolerance presentation : https://www.ieee802.org/3/dj/public/23_03/riani_3dj_01_2303.pdf

Illustration of bit-flows with 8 ways Hamming Interleaver and padding block towards line side

Visualization of bit-flows from Hamming Encoder \rightarrow Hamming Interleaver \rightarrow padding blocks in 200G mode

Corresponding bits flows in 800G mode towards line side

Hamming encoder generation matrix

1	0	0	1	0	1	0	0
1	0	0	1	0	1	0	0
0	1	0	0	1	0	1	0
0	1	0	0	1	0	1	0
0	0	1	0	0	1	0	1
0	0	1	0	0	1	0	1
1	1	0	0	1	0	1	1
1	1	0	0	1	0	1	1
1	0	1	1	1	1	0	0
1	0	1	1	1	1	0	0
0	1	0	1	1	1	1	0
0	1	0	1	1	1	1	0
0	0	1	0	1	1	1	1
0	0	1	0	1	1	1	1
1	1	0	0	1	1	1	0
1	1	0	0	1	1	1	0
0	1	1	0	0	1	1	1
0	1	1	0	0	1	1	1
1	1	1	0	1	0	1	0
1	1	1	0	1	0	1	0
0	1	1	1	0	1	0	1
0	1	1	1	0	1	0	1
1	1	1	0	0	0	1	1
1	1	1	0	0	0	1	1
1	0	1	0	1	0	0	0
1	0	1	0	1	0	0	0
0	1	0	1	0	1	0	0
0	1	0	1	0	1	0	0
0	0	1	0	1	0	1	0
0	0	1	0	1	0	1	0
0	0	0	1	0	1	0	1
0	0	0	1	0	1	0	1
1	1	0	1	0	0	1	1
1	1	0	1	0	0	1	1
1	0	1	1	0	0	0	0
1	0	1	1	0	0	0	0
0	1	0	1	1	0	0	0
0	1	0	1	1	0	0	0
0	1						

- Hamming $(68,60)$
- P60 matrix

PMA functions

- PAM4 encode
- Maps pairs of bits to Gray-coded PAM4 symbols as defined in 120.5.7.1.
- Equalizer, CDR
- Generates an estimate of the Gray-coded PAM4 symbol received from the PMD service interface and a measure of the quality (or reliability) of the estimate.
- The quality of the estimate is used by the Hamming decoder in the FEC sublayer

- PAM4 decode

- Maps estimate of the Gray-coded PAM4 symbol to a pair of bits as defined in 120.5.7.1.
- The bits, and the corresponding quality estimate, are communicated to the FEC sublayer via the PMA:IS_UNITDATA_i.indication primitive for physical lane i

Refresh of Convolutional Interleaver + Inner Code $(128,120)$ latency

Client Type	Parameters for Interleaver	FEC	Decoder Input BER	Latency
800GBASE-R (2 way interleaved)	$W=2, P=6, D=6$	$\mathrm{RS}(544,514)+$ Inner code $(128,120)$	$4.85 \mathrm{E}-3$	$\sim 140 \mathrm{~ns}$
800GBASE-R (4 way interleaved)	$W=4, P=3, D=6$			~56ns
400GBASE-R (2 way interleaved)	$W=2, P=6, D=6$			$\sim 140 \mathrm{~ns}$

- Proposed 800G Latency is highlighted in dotted box
- BER thresholds are simulated using AWGN model. The Cl helps with randomly distributing equalizer burst errors which results in AWGN model BER estimate to be accurate. See:
- https://www.ieee802.org/3/df/public/22 05/22 0517/bliss 3df 01a 220517.pdf
- For channels with correlated errors, see:
- https://www.ieee802.org/3/df/public/22 10/22 1005/bliss 3df 01 220929.pdf

Summary

\square We presented a FEC baseline proposal that enables the 200G/Lambda Optical IM-DD links for DR and FR reaches.
\square The Presented proposal is a result of consensus building by combining multiple past 802.3df/dj presentations as well as recent work since the last task force meeting.

The proposed inner code is a low complexity solution that works in conjunction with the existing RS $(544,514)$ FEC to act as a booster to the overall coding gain for FR4 Link

Leveraging the existing RS $(544,514)$ FEC for 200 GUI will benefit the industry and will ease the backward compatibility issues.

Appendix A: Padding bits

Padding Specification

- 384 bits $=3$ CW using 128, 120 code

- Payload bits $=360$ ($=45$ B), parity $=24$ bits
\square
- 45 data bytes composed as follows
- 6 byte frame sync field (same as 200G/400G PCS AM, offers DC balance \& hardware reuse):
- 0x9A4A2665B5D9
- Remaining 312 bits are scrambled with PRBS13, using generator polynomial $X^{13}+X^{12}+X^{2}+X+1$, seed reset to $0 \times C C C$ for each pad fragment):
- 38 byte Message field - Start of scrambling with PRBS
- 8 bit message index (8 bit counter 0 to 255)
- 8 bit message type (see slides $4 \& 5$)
- 36 bytes message content
- 1 byte CRC8 (calculated on previous 38 bytes) - polynomial is $X^{8}+X^{5}+X^{4}+1$
- The 38-bytes message field (details to be specified) can be used to convey link and signal-related information, such as receiver state, channel pulse response, FEC stats, etc

Padding Field Construction Reference Implementation

Padding Field Consumption - Reference Implementation (Informative)

Thanks !

