Supporting Channel Analysis for a Backplane Objective

Nathan Tracy Megha Shanbhag

TE Connectivity March 2023

EVERY CONNECTION COUNTS

Contributors

Regee Petaja, Broadcom Adam Healey, Broadcom Vivek Telang, Broadcom

Acknowledgements

Jim Weaver, Arista Jason Chan, Arista

Overview

A preliminary investigation into passive copper backplane channels, based on a mix of conventional and unconventional architecture concepts, is presented to help support technical feasibility, enable multi-party analysis and provide guidance to P802.3dj discussions.

Development work is on-going, updates and refinements are anticipated in future contributions.

This is not intended to be a final position or a proposal on backplane channel performance.

The intent of this presentation is to provide technical support and directional input for adding a backplane objective and promote consensus among the participants.

Description

- Simulation for 200G KR channel using backplane concept connector and cabled backplane assembly with various host architecture options
- Includes BGA escape model provided by Regee Petaja of Broadcom
- Does NOT include silicon package
- Current view of backplane channel performance in various host implementations
- What this presentation is NOT:
 - Modulation proposal
 - Channel or Cable Assembly loss proposal
 - A specific host architecture proposal;
 - comparative performance options are presented, i.e., traces vs. cabled host to "near ASIC" vs. co-package copper
 - Asymmetric architecture proposal (managed deployment)

KR 1 (Switch Fabric PCB Routing)

Channel includes,

- Right Angle backplane SMT connector mated to cabled backplane connector
- SMT footprint includes via transition and breakout
- Cable Termination to cabled backplane connector
- 10", 30AWG Cable
- · Cable termination to near chip connector
- Near chip connector
- Near chip transition via and breakout traces
- BGA footprint + breakout
- 7dB traces from RA connector to BGA
- 2.7dB traces from near chip connector to BGA

KR 2 (Medium Chassis, Near Chip Cables)

Channel includes at each end,

- Cabled backplane connector
- Cable Termination to cabled backplane connector
- 10", 30AWG Cable
- Cable termination to near chip connector
- Near chip connector
- Near chip transition via and breakout traces
- BGA footprint + breakout
- 2.7dB traces from near chip connector to BGA

KR 3 (Large Chassis, Cabled Backplane, Near Chip Cables)

Channel includes at each end of 1m cable,

- Cabled backplane connector to cabled backplane connector
- Cable Termination to cabled backplane connector
- 10", 30AWG Cable
- Cable termination to near chip connector
- Near chip connector
- Near chip transition via and breakout traces
- BGA footprint + breakout
- 2.7dB traces from near chip connector to BGA

Performance Comparison

	TP0 – TP5 IL, dB @53.125GHz
KR1	19.3
KR2	18.3
KR3	27.4

freq, GHz

30

KR1:

Crosstalk pinmap*

F	F	Ν	Ν	
F	F	Ν	Ν	
F	V	Ν	Ν	

*BGA crosstalk contribution only includes FEXT

0

-5-

-10-

-15-

-20-

-25-

-30

-35-

-40

0

10

20

Magnitude, dB

Summary

- Simulation results have been provided for 200G channels consisting of:
 - Backplane 200G concept connector, Both PCB right angle and cabled connector versions
 - Backplane concept connector includes footprint and via
 - 10 inches of internal cable assembly to NCC host connector and footprint
 - 2.7dB and 7 dB loss host traces
 - BGA footprint and breakout model
- Not a final position on component or channel performance, further development is in process
- Intent is to provide meaningful support for addition of an 802.3dj backplane objective
- A range of host implementation architectures/technologies may be useful to enable 200G based modular systems
 - Internal cables can provide meaningful channel improvement and reach

