Feasibility Study on Baud-Rate Sampling and Equalization (BRSE) for 800G-LR1

Tao Gui (Huawei)
Qian Xiang (Huawei)
Xiang Liu (Huawei)

IEEE 802.3dj May Interim meeting
San Antonio, Texas
May 15, 2013
Supporters

Tony Chan Carusone - Alphawave Semi
Or Vidal - Alphawave Semi
Cedric F. Lam - Google
Power saving for 800LR1

• ADC/DAC and equalization account for a large proportion of power consumption of coherent receiver ASIC [1]
• A O-Band with baud-rate sampling ADC/DAC and DSP will be a good candidate to significantly reduce the DSP power
• In this contribution, we conducted an initial feasibility study of BRSE-based 800G-LR1

TED: timing error detection; CPR: carrier phase recovery; VCO: Voltage controlled oscillator
BRSE has been used in IMDD receivers [2]

- Independent clock tracking digital timing recovery (TR) loop for each lane with low enough latency.
- Analog based clock recovery schemes with sample at the center of each signal pulse (eye open)

Why BRSE hasn’t been used in coherent yet

- **BRSE is sensitive to ADC sampling phase**, that results:

 - **Firstly, the timing recovery (TR) is more risk to a distorted coherent receiver**
 - The incoming signal is temporally varying due to LOFO, SOP, and so on. The analog TR with eye open cannot work.
 - The digital TR before the MIMO may fail due to the strong inter-symbol-interference (ISI) caused by CD and PMD.
 - **However, the ISI is much smaller for 800LR (especially in O band), timing error detection (TED) methods have the chance to work**

 - **Secondly, the BRSE technique is sensitive to delays or skews between the XY and IQ**
 - Coherent receiver ADCs are challenge to sample at the center of each signal pulse (with delays or skews between the XY and IQ).
 - The skews cannot be compensated by traditional coherent DSP with interpolation based digital methods under baud-rate sampling.
 - **However, a real-value 4X4 MIMO can enhance the tolerance to the skews, while implementation complexity can be simplified when the fiber CD is negligible (O band).**
 - *What's more, the required timing delay for each of four ADC clocks could be individually or jointly optimized [3]*

 - **Thirdly, it is has a limited tolerance to fiber CD and PMD**
 - Traditional coherent is for metro and long-haul transmission in the C-band, where CD and PMD can be too high for BRSE.
 - **However, for 800LR the fiber CD and PMD are much smaller, especially when the O-band is used**

Simulation for BRSE

- Simulation model and DSP flow

<table>
<thead>
<tr>
<th>Simulation Parameters</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baud-Rate</td>
<td>123.6G baud</td>
</tr>
<tr>
<td>Modulation format</td>
<td>16QAM</td>
</tr>
<tr>
<td>FEC threashed</td>
<td>1.1e-2 (Based on KP4+BCH)</td>
</tr>
</tbody>
</table>

TED: timing error detection; TD-MIMO: time domain MIMO; CPR: carrier phase recovery; ABSPD: abs timing phase detector [4]

CD tolerance to TR of ADC under Baud-Rate Sampling

<table>
<thead>
<tr>
<th>TED Algorithm Example</th>
<th>Note</th>
</tr>
</thead>
</table>
| Gardner/Godard [5] | • Normally used, can suffer uncompensated CD and PMD
• Cannot work under baud-rate sampling (without distinct spectral line at the baud-rate) |
Sign MM [7] | • Can deal with small Roll-off Factor values without distinct spectral line
• But sensitive to the CD and PMD
• Expected CD tolerance smaller than 40ps/nm |

CD Influence to Baud-Rate Sampling Equalizer

- The CD tolerance can be improved to >150 ps/nm.

Note: An extra CD compensation before TR has done for those cases

Why CD brings extra penalty to BRSE?
- Out-of-band spectral components are mixed in-band under baud-rate sampling, causing colored noise
- The effect of aliasing could be enhanced by CD [9,10]

Improve Tolerance to IQ Skew and PMD

• Normal 2x2MIMO cannot work with Skew >1 ps.
• DGD/PMD distortion may one of the top problems of BRSE, and four ADC clocks with individually optimizing may help to future increase the tolerance.
• A real-value 4X4 MIMO, can enhance the tolerance to both IQ skew and DGD (to 3 ps).
Performance Degradation of BRSE due to LOFO

- BRSE is relatively sensitive to local oscillator frequency offset (LOFO), with ~3GHz tolerance.
- Thus, the LOFO should have a proper constraint.
Summary

- We have conducted an initial feasibility study on the use of baud-rate sampling and equalization (BRSE) to achieve low power consumption in 800G-LR1.
- The simulation results show that BRSE is feasible to achieve for 800G-LR1 (123GBd DP16QAM) without a CDC module
 - Non-decision aided TR is expected to tolerate <40ps/nm dispersion.
 - The 4x4 MIMO based Baud rate equalizer is expected to tolerate, 3.5ps IQ skew, 3.5ps DGD, and ±3GHz Laser frequency accuracy, respectively.
- With a CDC module prior to TR, >150ps/nm CD can be tolerated.
- Due to its multiple benefits, BRSE is a promising coherent-lite approach for further evaluation, especially for O-band 800G-LR1 (even for O-band 800G-ER1).

Thank you!